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Abstract

In this paper, we construct an algorithm for the shorterst pair of physically-disjoint paths
between a given pair of nodes in telecommunication fiber networks. Such networks are
complicated by the fact that a given span can be shared by more than one link. A link indicates
connections between two nodes (central offices) in the network, while spans are the physical
connections that comprise the facility (physical) network. Because of span-sharing possibility,
new physical-disjointness algorithms are required. The algorithms we give for shortest
physically-disjoint paths consider two commeonly occurring span-sharing topologies in

telecommunication fiber networks.

Physically-disjoint (node as well as span-disjoint) paths

improve reliability of a given network, while optimality implies reduced network costs.

1. Introduction

As fiber is increasingly deployed in telecommunication
networks, reliability o1 a network is being called into
question more than ever before. This is due to the fact
that as more traffic is transported over the high
bandwidth fiber network, any span (facility link) cut
results in the loss of a large volume of traffic. One way
to increase reliability of services provided to customers
is via physical-diversity, i.e., by providing iwo
physically-disjoint paths (node-disjoint as well as span-
disjoint) to customers so that if one of the paths fails due
1o a span cut or node failure, the affected traffic can be
routed on the other avatlable physically-disjoint path.
Clearly, when such pairs of disjoint paths are available,
it is preferable to choose the shortest pair (sum of the
& two paths is a minimum), since an optimal pair for
; routing implies least cost, and subsequent benefit to the
i customers if part of the savings is passed to them.

- “ Algorithms for optimal disjoint paths were first given
£ by Suurballe [1,2]. However, they apply only to
% taditional graph-theoretic networks described by nodes
:-‘and (logical) links, indicated by dashed lines in Fig. 1. A
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| between nodes A and B may consist of a single
D)
8 or a set of spans from A to B. Due to economic

and practical considerations, telecommunication fiber
networks may be so constructed that the physical paths
of two different links in the network may share a span or
a set of spans. Thus, the traditional algorithms [1,2]
applicable only at the link level are inadequate because
the node-disjoint paths found by them in such networks
could consist of span-sharing links. -

In this paper, we consider facility networks with two
common types of deviations from the traditional graph-
theoretic networks of nodes and links (Section 2), and
provide an algorithm for the shortest pair of physically-
disjoint paths between a given pair of nodes in the
network (Section 3). To our knowledge, an algorithm for
such type of a network has never béen given before.

2. Network description

We consider the following network topologies different
from the traditional network:

1) Fork Configuration : Refer to Fig. 2(a). Nodes A and
B are connected physically (i.e., by fiber) via spans AO
and OB; point O being a junction. The connection or link
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Fig.2(a) Fork configuration with two prongs (also
called Y configuration in the text), and (b) fork
configuration with n prongs '
between A and B is indicated by the dashed line AB.Ina
similar way, nodes A and C are physically connected via
spans AO and OC, and this link between A and C is
indicated by the dashed line AC. However, nodes B and C
are not similarly connected, i.e., node C can only be




reached from node B via traversal of spans BO, OA, AO,
and OC in the order given, or alternatively by some other
path (in the network) that does not involve junction O. In
short, a link between nodes B and C, similar to the ones
between nodes A and B, and nodes A and C, is missing in
Fig. 2(a). Fig. 2(b) is a generalization of Fig. 2(a). Itis a
fork configuration with n prongs; the same constraints
apply to connections between any pair of nodes Bj and
Bj,i#j,1=12,---n, and =120,

2) Express Link: In Fig. 3, the AB, BC, and CD
connections (dashed lines) are via the physical spans
{continuous line)AB, BC, and CD, respectively. In

Fig. 3 Express link AD traversing three links, AR,
BC, and CD.

addition, nodes A and D are also connected directly by a
fiber that originates at node A and terminates at node D,
traversing spans AB, BC, and CD. This connection or link
is indicated by the dashed line AD, and called an express
link. In general, an express link may traverse n links,
where n is an integer greater than 1; furthermore, the set
of n links could include the links of fork configuration.

In what follows, we assume that the network under
consideration is interspersed with network configurations
depicted in Figs. 2 and 3. Fig. 4 is an example of such a

Fig. 4 A network with two fork configurations
{junctions: O, O') and express link CE (span
compostion: CD, DO", and O'E).

network. This network is constructed so that at the link
level (dashed lines), it is identical to the traditional graph-
theoretic network of Fig. 1. At the physical level, the
network is different. There are 2 fork configurations with
junction points: O, O, and an express link, CE. The
problem is to find an optimal pair of physically-disjoint
paths between a given pair of nodes in a network such as
Fig. 4. Optimality refers to minimum total span (or fiber)
miles for the pair of paths.

Clearly, the available shortest pair of node-disjoint paths
algorithm (SPNP) algorithm [1,2}, valid for the standard
graph-theoretic network of Fig. 1, cannot be applied to
the network of Fig. 4 at the span (physical) level, because
the junction nodes O, O' are not true nodes (see Fig. 2 and

discussion). On the other hand, the network at the li
level (dashed lines) consists of true nodes, and the SP?
algorithm can be applied to the network of Fig. 4 at t
link-level. The links can be weighted by the sum of t
length of the spans comprising the tink. The SP}
algorithm when applied at the link level in Fig. 4 giv
the shortest pair of paths (with respect to span mile
each path in the pair defined by a sequence of linl
However, because the links of the two paths can ha
overlapping spans, the paths found are not necessar
physically-disjoint. For example, in Fig. 4, if the SP?
algorithm finds the optimal pair of node-disjoint pat
between nodes A and Z to be ABDZ and ACEGZ, spa
AO and DO’ would be common to the two paths four
To avoid such span commonness, a new algorithm
needed. In the next section, we not only give an algoritt
for finding physically-disjoint paths (node-disjoint as w
as span-disjoint), but also ensure that the pair of pat
obtained is shortest with respect to span mileage.

3. Algorithm for the shortest pair
physically-disjoint paths

Our strategy in developing an algorithm for the optin
pair of physically-disjoint paths in a network such as F
4 is to perform network transformations such that t
SPNP algorithm can eventually be used at the link-lev
without violating the requirement of physic:
disjointness. Therefore, as a first step, we describe t
SPNP algorithm. The SPNP algorithm we give below |
is an improved version of the Suurballe algorithm [1,2]
that it does not require a general shortest path algortt
like that of Ford's [4] or, alternatively a special canor
transformation in order to facilitate the use of the popu
Dijkstra algorithm [5,6]. Rather, the Dijkstra algoritt
here is altered slightly to circumvent the need for t
usual canonic trapsformation. This modified Dijkst
algorithm is given in Appendix A.

3.1 Shortest pair of node-disjoint pat!
algorithm [3]

1. For the given pair of nodes under consideration, fi
the shortest path using the shortest path algorithm giv
in Appendix A. As an example, refer to Fig. 5a. Ea
link in the graph is equivalent to two oppositely direct
arcs of length equal to the link length.

2. Replace each link on the shortest path by an 2
directed towards the originating node (see Fig. 5b). M
the length of the arcs negative. ’
3. Split each node (except the endpoint nodes, A and
and nodes of degree 3 or less {7]) on the shortest path it
two colocated subnodes. Join these nodes by an arc
length zero, and direct it towards the starting noc
Replace external links connected to nodes on the shortt
path by two arcs of the same and original length, 2
connected to the two subnodes As shown in Fig. Sc.

4. Run the shortest path algorithm (Appendix A) again.
5. Remove the zero length arcs; coalesce the subnodt
into their parent nodes. Replace the single arcs of th
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Fig. 5a Shortest path for the pair, A and Z, is
assumed to be ABCDZ, with A the starting node in
the shortest path algorithm.
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Fig. 5b Network with shortest path links replaced
with negative arcs directed towards node A.
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Fig. 5S¢ Network modified by node-splitting.

Remove overlapping links of the two paths found to
obtain the shortest pair of paths.

We now consider a network interspersed with express
links and fork configurations, as in Fig. 4. As a first step,
we will focus on the express links.

3.2 Express link

Fig. 6 shows an express link spanning n links. As Fig. 4
showed, the simultaneous presence of the express link
and the links between nodes 0 and n in the network leaves
Open the possibility of link (and thus span) sharing by two
node-disjoint paths determined by the SPNP algorithm.
For example, one of the paths could enter node 0 and
leave node n. The second path could enter node 1 and exit
Vid any of the intermediate nodes 2,3,-—-,n-1, producing
path overlaps of 1,—-,n-2 links, respectively. A remedy
for preventing overlapping links (and thus overlapping
Spans) while maintaining optimality for a pair of paths is
Provided through the following arguments:

Fig. 6 Express link traversing n links.

Suppose path I enters node 0. Then, it can exit from
any of the nodes 1,2,---,n. There are n possibilities in all,
which can be divided into two types:

a) If the exit of path I takes place from any of the
intermediate nodes 1,2,--n-1, then the presence of express
link is redundant.

b) If exit of path I is to take place from node n, there
are two choices :

1. Path I goes directly to node n in a single hop via the
express link.

2. Path 1 goes through the intermediate nodes 2,3,---n-
1, reaching node n in the final hop.

Both choices involve the same number of span miles
and are therefore equivalent as far as span mileage is
concerned. Choice 1 is preferable from the viewpoint of
number of hops, since the number of hops is only 1. But
its selection by the shortest path algorithm would leave
open the possibility of overlapping links when the second
path is determined. Consequently, any algorithm to be
used should be constrained to select choice 2 in the above
situation. This constraint can be easily enforced by
simply deleting the express link from the network.

In view of a) and choice 2 in b) above, the following
important rule emerges: Eliminate all express links
before running the SPNP algorithm.

3.3 Fork Configuration

Assumptions:

1} The fork configuration consists of two prongs (this
assumption is only for the sake of simplicity in
discussion). See Fig. 2a. We call this configuration the Y
configuration (as we shall see later, the results for the Y
configuration also hold for the fork configuration with
more than 2 prongs).

Fig. 7a Two adjacent Y configurations giving rise to
multiple links between B and C.

2) There are no multiple links. If they do occur as in Fig.
7a, they can be eliminated by introducing a dummy node
of degree 2 (see Fig. 7b), X

As a first step, we show that the constraint of node-
disjointness at the link-level ensures absence of span-
sharing in the region of the network away from the
common endpoints of the two paths.
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Fig. 7b Introduction of dummy node B’ results in the

disappearance of multiple links; link BC via junction
Q' is divided into two links , B'B and B'C.

Refer to Fig.8 which shows two paths encountering a2 Y
configuration. The three different orientations of the Y
configuration are considered {]. In each of these cases,

Fig, 8 Paths I and 1I encounter a Y configuration in a
different orientation in each of the three figures.

the constraint of node-disjointness at the link-level
ensures that span OD commen to links CD and BD is not
traversed by both the paths simultaneously. The reason is
that sharing of span OD requires each path to meet at
node D. Since the constraint of node-disjointness prevents
the two paths to have a common node, the two paths
cannot meet at node D; hence sharing of span OD cannot
oceur.

At the end points, A and Z, between which a pair of
physically-disjoint paths is sought, two cases arise now:
1. No Y configuration is present.
2. Y configuration at end point A and/or Z is present.

3.3.1 No Y configuration at the end poinis: We have
aiready seen above that the constraint of node-
disjointness ensures absence of span-sharing away from
the end points. If, in addition, Y configurations do not
occur at the endpoints, an application of the SPNP
algorithm at the link-level will guarantee a shortest
physically-disjoint (node as well as span-disjoint) pair of
paths.

3.3.2 Y configuration at the end points: When Y
configurations occur at the end points, they accur in two
orientations. These orientations, denoted by Y1 and Y2,
are displayed in Fig. 9.

Y1 Orientation: Constraint of node-disjointness at the
link-level ensures absence of span-sharing at node A; for
example, if one path leaves node A via link AB, the
other path necessarily leaves node A via link AD, and
span OB is never common to the two paths originating
from node A. Thus, the SPNP algorithm suffices.

{Y1 Orientation)

(Y2 Orientation)
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Fig. 9 Two orientations, Y1 and Y2, of the Y
configuration at the end point A.

Y2 configuration: In this case, node-disjointness at the
link-level does not guarantee span-diversity. For
example, the two paths found by the SPNP algorithm may
traverse links AB and AC in which case span AO will be
common to both the paths. Thus, the SPNP algorithm
fails. For completeness, consider the most general case,
where Y configurations occur at both the end points (A
and Z). The shortest path between A and Z falls into one
of three categories:

1. It does not pass through the Y configurations present
at the end points.
2. It passes through a Y configuration at one of the end
points. :
3. It passes through the Y configuration at each end
point. )
Case 1: :
17

In this case, a second path (node-disjoint from the first) 1
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Fig. 10 Shortest path originating from node A and
passing through span AO of the Y configuration at
end point A, and subsequent network modifications.

will not share any spans with the first path. Thus, the
SPNP algorithm, when applied, yields an optimal pair of
paths that is not only node-disjoint but also span-disjoint.

Case 2:

Here the second path, even though node-disjoint from the
first, can share a span {the stem of the Y configuration at
the end point A). Fig. 10 shows the shortest path between
A and Z, passing through link AB. Clearly, the second
path determined by the SPNP algorithm could traverse
link AC, thus sharing span AO in the process. We now
state that this situation can be remedied by modifying the
fetwork in the following way:

a_) Replace the end point Y configuration (through
which the shortest path passes) with a new Y
configuration in which the stem of the Y configuration is
of length 0, and the prongs of length equal to their
Tespective parent links (see Fig. 10).

b) Replace the span node of the Y configuration
(through which the shortest path passes) with a network
node so that spans of Y configuration become links of the
network (see Fig. 10).

Network modification b) ensures the absence of span
commonness (in the original network) since the only span
that can be common to the two paths has been
ransformed into a link. Furthermore, because the length
of this link is O via modification a), the shortest path
between nodes A and Z remains invariant in the modified
network. This is a crucial requirement for convergence
and ensuring the optimality of the disjoint paths when the
SPNP algorithm is applied [9].

Case 3

For the third case in which the shortest path passes
through Y configuration at each of the end points, A and
Z, the above network modification is performed at both
the end points.

3.3.3 Algorithms for Y Configuration The results of
Sec. 3.3.1 and Sec. 3.3.2 can now be combined into the

following algorithm:

Algorithm 1: In a network interspersed with Y
configurations (express links absent), the shortest pair of
physically-disjoint paths between a given pair of nodes, A
and Z, is obtained from the following steps;

1. Find the shortest path from A to Z in the network of
nodes and links.

2. Examine the end point spans of the shortest path
found. If an endpoint span is the stem of a Y
configuration, perform the following transformation:
Replace the junction span node of the Y configuration by
a node and alter the length of the stem of the Y
configuration to zero, while increasing the length of the
individual prongs to the length of the individual links, as
in Fig. 10.

3. Modify the network (at the link-level) as in the SPNP
algorithm routine (see Sec. 3.1).

4. Run the shortest path algorithm again, using the
algorithm in Appendix A.

5. Erase overlapping parts and coalesce split nodes, as in
the SPNP algorithm, to obtain the shortest pair of node-
disjoint paths. The pair obtained is also span-disjoint.

6. Transform back to the original network by replacing
any added nodes in step 2 by span nodes and resetting the
individual span lengths of the Y configuration to original
lengths. The pair of paths obtained in step 5 becomes an
optimal pair in the original network.

Note that a tacit assumption is that the links are
weighted by the total length of the component spans.
Thus, the optimality is with respect to span mileage. It is
important to mention here that these algorithms are
general enough that weights corresponding to a different
physical quantity such as dollar cost for transmission over
the link, etc., can also be assigned to the links, in which
case optimality is with respect to that physical quantity.
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3.3.4, Algorithms for the general fork configuration
Algorithms 1 and 2 specifically developed for a network
in which Y configurations are present, is also applicable
to networks that contain fork configurations with more
than two prongs (see Fig. 2(b)). This is due to the fact that
the basic topology of the fork configuration is
independent of the number of prongs. Thus, algorithm 1
generalizes to fork configurations with an arbitrary
number of prongs by replacing the expression, Y
configuration, with fork configuration everywhere in the
statements of the algorithm.

3.4 Overall Algorithm

An algorithm for a general network like Fig. 4 obtains
upon combining the results of Section 3.2 and Section
3.3. Since results of Section 3.2 are valid for optimality
with respect to span mileage, the overall algorithm
performs optimization with respect to span miles. In other
words, the links are weighted by the total physical {ength
of the spans comprising the links.

Algorithm 2: When a neswork contains express links,
and fork configurations, the shortest pair of physically-
disjoint pair of paths between a given pair of end points is
obtained from the following steps:

! Remove the express links in the network.

2. Perform steps of Algorithm 1.

3. Piece together links on the two paths to form express
links, if possible. These express links must belong to the
set of express links removed in Step 1.

Step 3 is optional. Its utility lies in the fact that it
reduces the total number of links in the two physically-
disjoint paths found by the algorithm. The total number
of span miles remains unaffected.

4. Summary

In this paper, we have considered networks which are
described by links and physical connections called spans.
Two different links may, however, share the same span.
We have considered two types of span-sharing links that
seem to commonly occur in telecommunication networks,
and have provided an algorithm for the shortest pair of
physically-disjoint paths for a given pair of nodes. The
developed algorithm, while requiring network
modifications, uses two runs of a shortest path algorithm
such as the one given in Appendix A, and is therefore
computationally fast. Disjoint paths are useful in diverse
provisioning of business services, and when
computationally fast can be employed in real-time diverse
provisioning of such services in a switched service
environment. Additionally, they can be utilized in a
robust design of telecommunication networks based on
the concept of traffic flow over two-disjoint paths for
every pair of nodes in the network.
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Appendix A

Modified Dijkstra Algorithm for Shortest Path from A
toZ

Let d(3) denote the distance of node i from starting
node A. Let P(i} denote its predecessor.

1. Start with

d{A)=0, d()=1(A.i) .if i€ Gy,

= oo, Otherwise

(G =set of first neighbor nodes of node i, I{i,j)=length of
arc from node i to node j).

P)=AVie Gy.

Set S =GAa.

2.Findje S

such that d(j)=min d(i),i€ S.

Set § =S - {j.

If j = Z (the terminal node), END; otherwise, go to 3.

3. Vie Gj, if d()+1(G.0) < d(D), set d(@)=d()+1(j,1), P()=]
and S= Su{i};
goto 2. .

The algorithm, after initialized in step 1, alternates
between steps 2 and 3. In each iteratibn, a node with least
pathlength is selected from the set: S The algorithm
searches by making one move at a time, and terminates
when the node selected from the set S is Z.



