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Abstract

In today's highly competitive telecommunication industry,
guaranteeing continuity of service 10 a business customer has
become extremely important to a service provider, One way
10 ensure continuity of service is to provide a pair of disjoint
paths such that if one path fails, the other path is
automatically invoked to carry the affected traffic. In this
paper, we consider the physical structure of tele-
communication fiber networks, which can be complicated by
span-sharing topologies, and provide an algorithm for
finding an optimal pair of physically-disjoint paths between a
given pair of nodes in the network. Optimality helps io
reduce the network's cost in providing diverse routes to a
customer, and in an overall design of a survivable
communication network.

Key words: network survivability, facility networks, disjoint
paths, optimization, graph theory

1. Introduction

As customer services incrcase to take advantage of the large
bandwidth offered by fiber, survivability of a network is
receiving a great deal of attention. Because of the large choice
of service providers available in today’s highly competitive
market, a customer has come to expect the highest quality of
service. A minimal expectation is the continuity of service,
since any disruption of service due 10 a node or link failure
within a given communication network can cause a customer
loss of revenue, not to mention the bad publicity for the
service provider and subsequent erosion of its customer base.
Thus, guaranteeing continuity of service at all times has
become a matter of paramount importance within the
telecommunication industry.

One way to guarantee continuity of service to a customer
is to provide service over disjoint paths such that if one path
fails due to a node or link failure, the service can be
continued over the other path. Algorithms for finding the
shortest set of disjoint paths between a pair of nodes in a
network described by a graph of nodes (or vertices) and links
(or edges) have been given in the past [1-3]. However,
telecommunication networks are more complicated than the
traditional graph-theoretic networks of nodes and links. This
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is due to the fact that a communication link connecting ty,
nodes is actually composed of a number of physicy
connections called spans, some of which may be common
other links in the network. Consequently, two paths disjoiy
at the link-level may not necessarily be disjoint at the span (o
physical)-level. Thus, the algorithms given in the past fiy
graphs described only by nodes and links can fail. This leag;
to the requirement for new algorithms. One such algorithy
based on the requirement of optimality has been given in the
past [4] for certain types of span-sharing configurations foung
within the telecommunication network. However, thj
algorithm is not adequate to deal with the general case ¢f
arbitrary span-sharing topologies.

In this paper, we present a radically-different approach
which permits construction of an algorithm for finding
optimal physically-disjoint paths, when an arbitrary set of
span-sharing configurations within the network is present,
Optimality is desirable to reduce the cost of diverse
provisioning of business services, and in the design of
survivable networks based on disjoint paths [1]. Section 2
describes the fiber network in detail. Section 3 gives the
approach and the construction of the optimal algorithm for
finding diverse routes.

2. Physical Fiber Network Description

The physical layout of a telecommunication fiber network
consists of links, where each link (also sometimes called a
logical connection) connects a pair of network nodes ; a link
is in general a series of contiguous physical connections,
called spans. A span normally is a buried conduit carrying the
communication fiber between two network points, called span
nodes. Figure 1 depicts a link (dashed line) with three spans:
AO, OO, and O'B. A, O, O, and B are called the span nodes.
Note that span nodes A and B are also the end point nodes of
the link AB, and the intermediate span nodes, O and O/, are
indicated by dark circles. The communication fiber
connecting nodes A and B, and forming the link AB,
traverses physically the spans, AQ, 00', and O'B. The length
of link AB = AO + O0' + O'B. In general, depending upon
the physical construction of the network, a given link may be
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composed of any number of spans.
telecommunication network is describable by a graph, G =
(N. L, Ny, L,J, where N, L, N, L, are the sets of nodes, links,

Fig. 1 Link AB composed of 3 spans: AO, 00, O'B.

span nodes and spans, respectively, In what follows, we
indicate the network at the link-level by dashied lines and at
the span (or physical)-level by continuous lines. Figure 2 is an
example of a network at the link-level.
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Fig. 2 A network of nodes and links (dashed lines).

Because of practical and economic considerations, the
network may be so constructed that several of its links may
share spans with each other. Figure 3 depicts a possible span
structure for links CH and DF of Figure 2. Link CH is
composed of spans CO, OO', and O'H, while link DF is
composed of spans DO, OQ', and OF; span OO' is being
shared by links CH and DF. In general, an innumerable span-
sharing configurations can be possible within the network.
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H

Fig. 3 Links CH and DF sharing span OO'.

Thus, a
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Because of the presence of the span-sharing configurations
within the network, the traditional shortest pair of node-
disjoint path algorithm (SPVP) [1-3] run at the link level can
fail. Consider, for example, the apr'ication of this algorithm
for tinding disjoint paths between nodes A and Z in Figure 2.
Suppose the SPVP algorithm finds (ABCHZ, ADFIZ) as the
shortest pair. Although the two paths are disjoint (excluding
the end point nodes A and Z) at the link-level, they are
clearly not physically-disjoint, since at least span OO’ (see
Figure 3) is common to the paths (clearly, more spans can be
in common, depending upon the span-structure of the other
links comprising the two paths).

Ref. [4] successfully constructed an algorithm to find the
shortest pair of physically-disjoint paths in a network
containing a certain class of span-configurations. The
algorithm was based on network transformations and the
modification of the existing SPVP algorithms. However,
when additional configurations such as Figure 3 are included,
the problem appears to be intractable and NP-complete [S].
We adopt a new approach here. The new approach leading to
an optimal physical-disjoint path algorithm is described in
Section 3. Because node and span failures are the most
common in telecommunication networks, physical dis-
jointness here implies node disjointness as well as span
disjointness (although we note that in the most general sense
physical disjointness implies span node disjointness
(excluding the end points A and Z between which the pair of
paths is desired)).

3. Optimal Algorithm for Physical-Disjointness

Instead of invoking the details of span-sharing configurations,
as was done in Ref. [4], we construct the algorithm from the
knowledge of span-overlaps between all pairs of links in the
network, For example, in Fig. 3, the span overlap between
links CH and DF is the common span OO'. In what follows,
we denote the length of the span-overlap between links i and j
of a given network by Sj;.

We therefore assume the following are given:

1. The basic graph of nodes and links, G = (N, L); the length
assigned to a link may be the physical length (in distance
units such as miles) or may simply be the dollar cost of
providing service over the link.

2. An ILl x LI span-overlap matrix Sy, specifying the amount
of span-overlap between links i and j; the matrix is symmetric
(Si=3Sp.

Next sections describe the construction of an algorithm
that calculates two paths between a pair of nodes (A and Z)
that are node-disjoint and have a minimum span overlap. The
algorithm first ensures node-disjointness, and then optimizes
with respect to span overlap. If more than one pair of paths
exists with the same amount of span-overlap, it chooses the
pair with the least total length.
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3.1 General Construction Concept

We illustrate the basic ides: behind the algorithm by
reference to Figure 3, which shows the network in the
neighborhood of node A (assumed to be the source node).
There are three links at node A (of degree 3). The (italicized)
number on each link identifies the link within the network; it
is not the length of the link. The aim is to find the shortest
pair of node-disjoint paths between nodes A and Z, while
satisfying the constraint of minimal span-overlap. The search
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Fig. 4 Italicized numbers 1, 2, 3 denote the number
assignments for links AB, AC, and AD, respectively.

for the pair starts by forming pairs of links emanating from
the source node A, and adding a single link at the end of each
link in a given pair to augment the pair of paths. There are
three link pairs at node A in Figure 4: (1, 2), (2, 3) and (1, 3).
Focusing on link pair (1, 2), one augments this pair of paths
by adding a link to each of the link (or path) end points B and
C; the link added at end point B is selected from the set of
links incident at B, excluding the preceding link AB;
similarly the link at end point C is augmented. In Figure 4,
there are m possible links for node B and n for node C. Thus,
the number of new possible pairs of paths generated is n x m.
However, not all of these pairs of paths may be node-disjoint,
since some of the end point nodes in the group of m links may
be common to the end point nodes in the group of n links.
Thus, the number of possible node-disjoint pairs generated <
n x m. These possibie pairs are each composed of 2 links.
Clearly, the possible pairs of node-disjoint paths in this
augmentation process mushrooms with the addition of links
(one to each path in a given pair), increasing rapidly with
cach augmentation. Of course, the process of augmentation
terminates when the destination node Z is reached on both
paths; when node Z is reached on one path, the link
augmentation process ceases for this path, while continuing
for the other path until destination node Z is also reached on
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this path. In a similar way one constructs pairs of pathg
ending at destination node Z starting with the remaining ling
pairs: (2, 3) and (1, 3) at source node A. Thus, the searg
performed is over all possible pairs of paths bet seen Aandz,

Each time a pair of paths is augmented, information j
stored about its current length and the total span-overlap
between the two paths. Such information storage permit
selection of the pair of paths between A and Z with minimup
overlap; if there are ties, the pair with minimum total lengy
is selected. We illustrate the span-overlap calculation wiy,
reference to Figure 5a, which is a network of 5 nodes and §
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Fig. 5a A network of 5 nodes and 8 links

1. Find neighbors of source node A: B,C, and D, which are
the end points of links 1, 2, and 3 in Figure 5a.

2. Form pairs of links: {(1, 2), (2, 3), (1, 3)}.

3. Obtain overlaps from the given overlap matrix: 8,,, S23, Si3

Pair Augmentation

4, Start augmentation with one of the 3 pairs of links, say (1,
2)

a) Find the neighbors of the forward end point of link 1 (node
B), excluding its predecessor (node A): C and Z; find the
associated links: 4 and 6.

b) Repeat for link 2: forward neighbors of C are B, Z, and D,
and the associated links are 4, 7, and §, respectively.

¢) Form link pairs that, in conjunction with link pair (1, 2),
produce node-disjoint paths (except for node commonness at
node Z): (6, 7), (6, 5).

d) Form pairs of node-disjoint paths resulting from the
addition of link pairs (6,7) and (6,5): (ABZ, ACZ) and (ABZ,
ACD), respectively.

Overlap Calculation

i) Calculate increment in overlap due to the addition of link
pair (6,7): 5'57 = 857 + S62 + 571.

The three components of S's; arise in the following
manner: Se; is due 10 the overlap between link 6 and 7. But
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jink 6 can also have an overlap with the predecessor links of
te other path, which is link 2 in the case under
consideration. Similarly, link 7 can have an overlap with link
1 of the other path. Thus, 1o cover all overlap possibilities, the
additional overlap terms, S¢; and S;i, must appear in the
expression {or S's. The total overlap for this pair of paths
(ABZ, ACZ), cach composed of two links = Sy, + S's7 = Sy3 +
Se7 + Sez + Sqy.

At this stage, we discuss a mapping in which the pair of
paths (ABZ, ACZ) appears as a sequence of links of lengths
S,; and S'e7 in a span-overlap graph shown in Figure 5b. The

S'es

S
Fig. 5b A mapping of the pairs of paths possible in Fig.
5a; the path length between A and Z in this graph Is the
amount of span overlap for the corresponding pair in Fig.
5a.

interpretation is that traversing this pair of links (of length
S12 and S'¢;) in the graph of Figure 5b is equivalent o
selecting the pair of paths (ABZ, ACZ) in Figure 5a.

ii) Now consider path augmentation by link pair (6, 5) and
calculate the increment in the overlap of the two paths: S'ss =
Ses + Ss1 + Sea.

In this case, one of the paths (with link 6) has reached the
destination node Z before the other path. Nevertheless
augmentation should continue for the other path, which then
requires the addition of link 8, yielding an additional overlap
expression S'ss = Sg¢ + Sz Note that along with the
consideration of overlap of links 8 and 6 is the overlap of
links 8 and 1. Since links 8 and 6 have the same common end
point Z (the destination node), the augmentation process
ceascs. The total overlap for the pair of paths constructed
(ABZ, ACDZ) = §); + S'ss + S'ss. Choosing this pair of paths
is equivalent to traversing links S5, S'ss, and S'g in Figure
5b.

5. Repeat Step 4 above for augmentations with link pairs: (2,
3) and (1, 3) of Figure Sa,

Augmentation from link pair (2, 3)

Starting with link pair (2, 3), one obtains node-disjoint paths:
(ACZ, ADZ) and (ACBZ, ADZ), which have overlaps equal
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10 Sy3 + S'7g and Sy3 + S'ss +S8"ss, respectively with S’y = Syg +
S73 + Ss2, S'ss = Sug + Suz + Ssy and S"s = Ses + S

Augmentation front link pair (1, 3)

This case yields node-disjoint pairs: (ABZ, ADZ), (ABZ,
ADCZ), and (ABCZ, ADZ), with overlaps S;3 + S"s, Si3 +
S"s + S™6 and Sy3 + S"s3 + S"yg, respectively; S"es = Seg +
Se3 + Sa1; S"s = Ses + Ssi + Se3; 516 = S16 + S715 S"4g = Sag +
Sa3 + Ss1; S"18 = S73 + Soa.

When all the above possibilities are considered, we have a
complete span-overiap graph shown in Figure 5b with

S's7 = 867 + Se2 + S71,
S'ss = Ses + Ss1 + Sea,
S'ss = Sse + Ss1,

S'4g = Saz + Ss3 + Sa,
S"68 = Ses + Ses,

S'78 = S7 + S73 +S42,
S"ss = Ses + Se3 + Ss1,
S"ss = Ses + Ss1 + S¢3,
S"6 = 876 + S71,

S$"4s = Saz + Sa3 +S51,
S"8 =S8+ S7s.

Thus, finding a pair of disjoint paths with minimum span
overlap between nodes A and Z in Figure 5a reduces to
finding the shortest path between nodes A and Z in Figure 5b.

We note above that overlap between a given pair of links
can occur more than once. For example, overlap between
links 5 and 6 occurs twice once in S'ss and the other time in
S"ss. The difference is that S'ss has predecessor link pair (1,
2) or equivalently predecessor nodes (B, C) different from the
predecessor links (1, 3) or predecessor nodes (B, D) in the
S"65 case.

Avoidance of Loops

When the paths are being augmented, it is possible that the
new node reached on one of the paths was already a node that
had been reached earlier, i.e., the path being augmented loops
back on itself. We illustrate this possibility in the network of
Figure 6, which consists of 7 nodes and 12 links. The two
disjoint paths to be generated between nodes A and Z start
with the only available link pair (1, 2) at node A. Suppose the
augmentation in three iterations leads to the paths (ACEZ,
ABFD). Clearly, the first path has reached the end point Z,
while the second path needs to be augmented from node D.
While reaching node E or node C is prevented by the
requirement of node-disjointness, node B can be accessed
(forming loop BFDB) unless measures are built into the
algorithm to prevent it. Thus, it is also necessary to check that
when the path is augmented, the node reached is not already
in the list of nodes forming the path.
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Fig. 6 A path, say ABFD, generated at the end of three
iterations may augment to ABFDB, forming loop BFDB.
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Implementation

The algorithm is casily implemented through the use of data
structures such as structs in C language. Each move in the
path augmentation process (leading to a new node) is
modeled as a structure with f{our elements: node number,
node’s label, the length of the path accumulated up to that
point, and a pointer to the node’s predecessor, which is also a
data structure with the above four elements. The last element
helps to trace the path generated at any point during the
search.

Refer to Figure 7 which shows two paths under
construction with current nodes at the end of the paths being
4 and 5; since in implementation it is convenient to associate
a number with a node, we indicate the nodes in this graph via
numbers. The inputs for the algorithm are a network
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Fig. 7 A pair of paths under construction; nodes are
indicated by numbers.

data base and an overlap matrix; for Figure 7, the input may
look like the following:

Node Neighbor Link# Length
1 2 1 10
1 3 2 8
2 4 3 5
3 1 2 8
3 5 4 3
‘
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Link #1 Link#2 Overlap S;
1 2 3
1 3 2
1 4 3
2 3 0
2 4 3
3 4 1

The two paths up to nodes 4 and 5 in Figure 7 would be
specified via structs (in C language) as indicated in Figure §,

NULL STRUCT

111}0 ojojojo

15 2

Fig. 8 Each struct is constructed of four elements, which
(from left to right) are node number, node label, path
length, and address to the predecessor of the node, which
is also a struct with similar elements; refer to Fig. 7.

As mentioned earlier, each struct is composed of four
elements, which (from left to right) are node number, node
label, length of the path up to that node, and pointer to the
predecessor, which is also a struct. Figure 8 is consistent with
the input data given above for Figure 7. For the pair of paths
in Figure 11b, the length of the path up to node 5 is 11 and
the length of the other path up to node 4 is 15. Up to this
point, the total overlap of the two paths is equal to Sy; + S34
+83+84=3+1+ 0+ 3 =7, using the overlap matrix
given above. This overlap information along with the
information on the current nodes (nodes 4 and 5 in Figure 7)
is stored so that the current state of the two paths is known
before the next augmentation move. Since an innumerable
pairs of paths may be possible between a given pair of end
point nodes A and Z, a situation will often occur whereby a
given node of the network is visited more than once during
the construction of path pairs. The second element in the
struct identifies the number of times that particular node has
been reached by all considered pairs so far. In the example of
Figure 8, each node has been reached only once so far. But if
the path of another pair being constructed were to pass
through one of these nodes, say node 4, this node will be
assigned another struct with the second element (node’s label)
equal 0 2, i.e., the node’s label is updated by 1 each time it is
reached. Similarly, in Figure 5a node C would receive the
label of 1 when the pair of paths AB and AC is generated



from the source node A, Further, it will receive a new suuct
when it is reached from node D, forming the node-disjoint
pair ADC and ABZ; the new struct will have a node label of
2. The node label helps to trace back to the source node, when
a given node has struct assignments with identical path

tengths.
Augmentation Process

i) Determine the current nodes’ neighbors (excluding the
predecessors of the current nodes).

ij) Find all possible pairs.

iii) Put pairs passing the node-disjoint and no-cycle tests into
an array.

iv) Trace back for each pair to find the total length and the
total overlap up to this point, tracing back is done via the
4t element which points to the predecessor node.

3.2 Algorithm

An algorithm is easily constructible based on a Dijkstra type

search [6-7]:

1) Augment from the start node.

2) Put all the current nodes of the pairs into two arrays;
each pair of paths has to be node-disjoint ands should
satis{y the no-cycle test.

3) Select the pair of nodes from the above arrays which
correspond to the pair of paths with the minimum,
overlap, and remove this pair from the arrays in Step 2.

4) Augment from the selected pair and repeat Step 2 until
the destination node Z is reached. Note that destination
node Z in general will not be reached simultaneously;
when Z is reached by one of the two paths in the pair
being constructed, the augmentation on this path of
course ceases but it continues from the second path until
destination node is also reached on this path,

5) Terminate when the selected pair has each of its current
nodes as the destination node and has the minimum
overlap in the array of pairs of paths generated in Step 2;
otherwise continue from Step 2. If there are several pairs
with the same amount of overlap, then the pair with the
least total length is selected.

Note that wherever the term node appears above, ils 4-
element structure is implied; thus all arrays are structs.

Efficiency: Because the manner in which the number of
pairs of possible paths increases, the algorithm compared to
the previous algorithms [1-4] is slow. However, given today’s
high speed, powerful computers with large memories, the
algorithm can be implemented and used effectively. We have

already tested a working code for a network of up to 270

nodes.

4. Summary

We have described the construction of an algorithm for
finding an optimal pair of physically-disjoint paths for real-
life telecommunication networks. Such networks are
described by not only nodes and links, but also span nodes
and spans, which comprise the physical part of the network.
The networks become complicated due to the sharing of spans
among links in the network. Consideration of arbitrary span-
sharing topologies makes the problem of finding disjoint
paths bhard. The approach adopted here is one of seeking the
desired paths simultaneously from a knowledge of a given
span-overlap matrix which contains information on the
amount of span overlap for every pair of links in the network.
The algorithm provides a pair of paths that are node disjoint
and have a minimum amount of span overlap, and chooses
further (in case of ties) a pair of paths with minimum total
length. The algorithm has been coded and tested for
networks as large as 270 nodes. It can be very useful for
providing diverse routes to customers who cannot afford to
lose any amount of data in the event of a network failure.
Further, it can be utilized in an overall design of survivable
networks by splitting traffic demands over disjoint paths [1].
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