A Constrained Minimum Cost s-f Cutset Problem

Ramesh Bhandari and Daniel Short
Laboratory for Telecommunications Sciences
8080 Greenmead Drive, College Park, MD 20740
drbhandarii7@gmail.com

Abstract

Given an undirected, unweighted graph G = (V,£), what is the minimum number
of edge cuts required to separate a source vertex § € V from the destination
vertex f € V, provided the cutset includes a given edge pg € £? A solution set
implies that if the cut edge pg is replaced back in the given graph, a path
between vertex § and vertex [is reestablished. This problem has potential
applications in the telecommunication world where robustness of a network
might be tested against multiple link failures. Because the problem is hard to
solve, we provide here a heuristic comprising two new techniques called the
Graph Collapse and Path Revival.

Keywords: undirected, unweighted graph, robustness, network, constrained,
minimum cost, §-f cutset, graph collapse, path revival, edge disjoint paths,

closure.

1. Introduction

In a data communication network, links connecting routers are periodically
brought down for maintenance [1]. Additionally, links fail occasionally, despite
maintenance. Consequently, the robustness of network must take into account
the possibility of links being out of commission due to maintenance or simply
normal failures. With the increase in complexity and size of the data
communication networks, multiple failures within a network at any given
moment are a real possibility.

Due to the varying technologies of the network components, the failure rate of

different links is expected to vary considerably. In this paper, we assume there
is one (high capacity) robust link that practically never fails (and does not

CONGRESSUS NUMERANTIUM 209 (2011), pp. 47-63

require maintenance) while some of the other network links can at any time be
down because of maintenance or technical problems. Clearly, some links being
down will force the affected network traffic to be rerouted on to other links
within the network, which must have enough capacity to carry the extra traffic.
As one of the tests for robustness of such a network, we address the problem of
identifying the minimum number of simultaneous down links that force the
traffic between a given pair of nodes in the network to traverse the given single
robust link. We assume that all traffic flows within the network do not
necessarily follow the shortest path route. As a result, the past techniques [2-3]
cannot be applied. In fact, the problem at hand translates into a constrained
minimum cost s-t cutsét problem described below. To our knowledge, such a
problem has not been addressed before.

2. Problem Description

Let G=(V, £) denote an undirected graph, representing a bidirectional network;
Vis the set of vertices (or nodes), and £ is the set of edges (or links); each edge
is assigned a weight of unity; we assume loops and multiple edges are absent in
the graph. We also make the assumption that graph G is biconnected (or 2-
connected), i.e., there always exist a pair of vertex-disjoint paths for any pair of
vertices in the graph. This has the implication that there always exists a simple
path, which connects a given pair of vertices, s and £ and includes a given arc
Pq . A simple path refers to a path in which a given vertex is not visited more
than once. Unless otherwise stated, in what follows, the term path refers to a
simple path; the terms 776fwork and graph will be used interchangeably, and so
will the terms 71046 and vertex, and /ink and édge.

Let P(5,1) denote a path from vertex S to vertex in the given graph G = (V,£).
Let I, denote an s-f cutset that includes a given edge pg, s-f cutset refers to a set
of edges which when cut separate vertex s from vertex % Clearly, replacing edge
pq back in the given graph reconnects vertex §and vertex [

The problem to solve can be stated as:

Given an undirected, unweighted graph G = (V,£), and a pair of vertices 8,f e V/,
and an edge pq € £,

minimize [T (1)
subject to arc pg (or arc gp) € P(s,t).

Eq. (1) may be referred to as a constrained minimum cost $-f cutset problem,
which seeks the minimum number of edges to cut in a given network graph

(with edge weights set to unity) such that there is no path connecting node sto
node £ In contrast to the earlier problems [2-3], we do not make the assumption
of traffic flow following the shortest paths.

An algorithm to find a// minimum cost s-f cutsets within a given (weighted)
graph [4] exists. One might think that one way to solve the constrained
minimum cost s-t cutset problem is to find all minimum cost §-f cutsets in the
graph (with the weights set to unity each), and then identify those that include
edge pg. But there is no guarantee that the minimum cost $-f cutsets obtained
would include edge pg as one of the cuts. Furthermore, especially with each
edge weight set to unity, the number of all cutsets can grow exponentially with
the size of the graph, making the problem intractable.

In this paper, to solve the constrained problem, we employ a heuristic procedure
comprising two new techniques: Graph Collapse technique, which reduces the
problem to a minimum-cost cutset $-/ problem, and the Path-Revival algorithm,
which then solves the minimum cost $-f cutset problem; the advantage of this
latter new algorithm over the a// minimum $-f cutsets technique [4] (where
multiple solutions are found simultaneously) is that it allows us to find multiple
solutions sequentially, permitting us to stop when a certain desired number of
solutions is reached. In Sections 3 and 4, we describe the Graph Collapse
technique and the Path Revival algorithm.

3. Graph Collapse

Through the Graph Collapse technique, we can reduce the constrained problem
to a minimum-cost cut set problem. The Graph Collapse technique takes two
node-disjoint paths, the first one from the source node $ to one end of the
diversion link and the second one from the other end of the diversion link to the
destination node / and collapses them into one node each. By collapsing both
paths, the diversion link then stretches across the source node § and the
destination node 4 and the problem reduces to finding the minimum cost §-f
cutset in the remaining graph (given graph &G minus the diversion edge) to force
the s-f traffic to traverse the diversion edge. Note that, because of the path
collapse, no edge belonging to the collapsed paths (the nodes-disjoint paths) is

cut'.

' Alternatively, instead of collapsing the two node-disjoint paths, one could
assign artificial weights of “infinity” to the edges of these two paths, and apply
the all minimum cost §-f cutset technique to solve the constrained minimum cost
$-fcutset problem. The advantage of the Graph Collapse technique is that the
resulting graph becomes immediately amenable to application of the new Path
Revival technique employed in this paper.

49

The Graph Collapse technique applicable to the two node-disjoint paths is
described fully in a pseudocode below:

Pseudocode for Graph Collapse technique (for one path of the node-
disjoint pair):
Let Path = {nodes on the path to be collapsed}
Let Path(/) = {ith node on the path}
For each Path(/), do:
For all node(/) with an arc connected to Path(/) in both directions
if node(j) is in Path, remove the link from the graph.
For each Path(/) except for Path(1) do:
For all nodes(j) with an arc connected to Path(/), do:
if arc (/) exists, then create a new arc to (Path(1),/), delete arc

(L)

if arc(/,/) exists, then create a new arc to (j, Path(1)), delete arc
(4.

In both cases, establish a list of form (J, /, Path(1)) in order to track
changes.

In the example below, Figure 2.1, we have a graph with two shortest node-
disjoint paths (in bold lines)” from Sto p, and Jto t We desire to collapse both
paths in order to be able to reduce the problem to a minimum cost §-f cutset.

J

G

Figure 2.1 Given graph before collapsing paths SEp and gFf.

2 There are standard algorithms to determine such disjoint paths; see, e.g., Ref.

[5].

50

Following the above pseudocode, we find that the graph after the collapse of the
two node-disjoint paths looks like the graph in Figure 2.2. The three nodes S, E,
and p of one path are coalesced into a single node SEp, and the nodes ¢F, and ¢
of the second path are coalesced also into a single node #F g. Multiple edges
appear, which can be taken care of in the implementation process by inserting
dummy nodes (see Appendix A). The set of three multiple edges includes the
link pg . The cardinality of the minimum cost §-f cutset here is 4. Replacing the
edge pg back in the graph, we find the minimum number of edges to cut to
force the -/ traffic over edge pg is 3 (as determined from the chosen node-
disjoint paths; see Section 6 for further discussions).

rq
SEp /

/ G

Fig 2.2 Graph after collapsing paths SEp and ¢Ft, the dashed line indicates the
minimum cost $-f cutset cut that separates node § from node ¢

4. Path Revival

After the graph is collapsed into a minimum cost $§-f cut set problem, there are
various algorithms [4] that can be used to solve the problem, but as
telecommunication networks tend to be sparse, a new minimum cost cut set
algorithm, called the Path Revival Algorithm, is developed. It is a unique
method via which the multiple solutions, if present, are obtained sequentially,
allowing one to terminate the search when desired. It is predicated on the well
known result that the cardinality of the minimum cost $-f cutset is equal to the
maximum number of edge-disjoint paths between nodes sand t [6-7].

Instead of applying maximal flow algorithm [4], one starts with a & edge-disjoint

path algorithm to find all possible edge-disjoint §-f paths. Once the & edge-
disjoint paths are found, they are removed from the network and then revived

51

one by one. The initial removal of the edge-disjoint paths disconnects node $§
from £ As the first path is revived, we search for a path maximally edge-disjoint
from the revived path. The idea is to determine which edges of the revived path
are likely to be a candidate for solution. Clearly, only the overlapping edges of
the two paths (the revived path and the maximally edge-disjoint path) are
candidate solutions, since cutting any of the overlapping edges disconnects node
$§ from node £ non-overlapping edges form cycles embedded in the path from
source to sink and edges belonging to these cycles cannot be candidates because
there is only one cut per path from source to the sink (the number of cuts =
number of edge-disjoint paths). Once a cut candidate is established, it is
removed from the graph and the next path is revived. Once the path is revived,
the procedure is repeated until all £ edge disjoint paths have been revived and
the solution set composed of selected cut candidates is established as a final
solution. Because there can be more than one cut candidate/path revival in the
above iterative method, there can be multiple solutions. Below, we give the
pseudocode for Path Revival:

Psuedocode for Path Revival Algorithm

Given a graph with source (8) and sink (9

Run k edge-disjoint algorithm from Sto fand record all paths
Remove all links on all paths from the graph

Revive one of any paths found from £ edge-disjoint algorithm
Begin Recursive Procedure: Path Revival

Recursion: Path Revival
Find Maximal edge-disjoint path (see Appendix B)
For each edge on the revived path,
If edge(/) is on the revived path and the maximally edge-disjoint path
edge(/) is a cut candidate, add to Cut List
If there is a path remaining,
remove edge(/)
revive next path
Run Path Revival
add edge(/)
Else
Add Cut List to Solution Set
Remove edge(/) from the Cut List

Let us illustrate the Path Revival algorithm with the graph in Figure 3.1. There
are three shortest edge-disjoint paths from source to the sink; these are SAB/,
SCDEF{ and SGf The listed paths are deactivated, and the result is shown in the

Figure 3.2

52

Figure 3.1 Example Graph

Figure 3.2 Graph after deactivating paths from Sto ¢

53

Let path SCDEFbe revived. We now search for a maximally edge-disjoint path
in the resulting graph (Figure 3.3). The maximally edge-disjoint path is
SCGEBF! The overlapping edges SC and Ff are identified as cut candidates.
We choose one of them, say $C, remove it from the graph, and revive a new path
SAB/(belonging to the edge-disjoint path set) as shown in Figure 3.3.

G
Figure 3.3 Reviving SCDEF{ and then cutting sC

This graph shows the new path, SAB/ and with a maximal edge disjoint path
being SADEFZ we have one cut candidate, SA (the only non-overlapping edge
between paths SABfand SADEF#)’ We then remove SA and revive sGZ, leaving
us with SG as a cut candidate. Now that all paths from 4-edge disjoint algorithm
are exhausted, we obtain a solution set of {$G, 8C, $A}. With this solution set in
place, we can continue with Path Revival algorithm and search for any more
solutions, so we go back to when there was a choice amongst cut candidates, sC
and Flin the first iteration of the path revival process, and now try Ff as a cut
candidatc. Trying F{ as a candidate will yield us {F{ B/, G} as a different
possible solution set. So the resulting optimal solutions are {sA, sC, sG} and

(BLFLGH.

* Note that there are additional maximally edge-disjoint paths (SADEBF!,
SADCGEF etc), but the answer is independent of which path is chosen.

54

G
Figure 3.4 Reviving SAB/, then cutting SA

Proposition: Path Revival algorithm will always yield optimal and valid
minimum $-fcutsets in a given graph.

Proof: Since k-edge disjoint path algorithm is used, it will give us & paths (the
maximum number of edge-disjoint paths). There cannot be any more paths,
otherwise A-path edge disjoint algorithm would have found those extra paths.
Because there are & edge-disjoint paths, & is the minimal number of edge cuts
needed to separate § from f (one particular edge cut on each of the K edge-
disjoint paths yields the cutset) [6-7].

In the Path Revival Algorithm, we delete all paths found by A-edge disjoint path
algorithm; this disconnects node § from node f We then revive one path at a
time. Suppose, when we search for the maximally-disjoint path, we discover a
disjoint path from source to sink. This discovery then would imply that nodes §
and ! were already connected, leading to a contradiction. So there cannot be any
edge-disjoint paths from source to the sink after reviving a path. Thus, an
application of maximally edge-disjoint path algorithm [5] after path revival will
always yield a set of overlapping edges. All edges in this set are cut candidates
because it takes only one edge-cut to separate § from £ Once this candidate cut
is removed from the graph prior to the next iteration, nodes § and ! are
disconnected once again and any subsequent path revival yields similarly a
single edge-cut (belonging to the revived path) to separate node § from node {
Thus, at the end of 4 path revivals, the solution set contains £ edges in the cutset.

55

Within the given graph, the nodes §and /still remain disconnected. Because the
cut of all the edges belonging to the obtained solution set keeps node §
disconnected from node £ this set constitutes a correct solution. Similar
arguments establish the optimality and correctness of other solutions that arise
from the case of more than one overlapping edge in the path revival process.
End of Proof.

5. Comparison of Path Revival algorithm with Other
Algorithms

In this section, we will compare Path Revival to an existing algorithm, called
Closure algorithm described in. [4]. Closure method uses maximum flow
algorithm to find all shortest edge disjoint paths from $to £ and then uses the
paths to construct all minimum cost §-f cutsets. The closure of a set in the graph
is used to determine which group of nodes does not constitute a cut set.

While Closure method uses maximum flow algorithm, Path Revival method
uses the maximal edge-disjoint path algorithm simply to find alternative paths
for every revived path in order to discover overlapping edges, which then
constitute cut candidates. That is, Path Revival checks one revived path at a
time to find cut candidates, while Closure examines the entire network to

discover cutsets.

In Appendix C, we provide tables for the run times using both our technique of
Path Revival and the Closure technique® [4]. Table 1 corresponds to the case of a
single unique solution, while Tables 2 and 3 correspond to the case of multiple
solutions (2 solutions). These tables indicate that Path Revival is better than
Closure on sparse graph with few disjoint paths from the source to the sink, or
equivalently, when the cardinality of the minimum cost $-! cutset is small
(maximum number of disjoint paths = cardinality of the minimum cost $-f
cutset). The critical cardinality value that determines which method is more
efficient lowers whenever there are more solutions (Tables 2 and 3). If desired,
because of the sequential nature in which the solutions are found, Path Revival
algorithm can be modified so that it terminates as soon as a certain number of
solution sets is found. As a result, the run time will often be reduced by a
significant amount (see Tables 4 and 5 where Path Revival terminates after
finding a single solution, while the Closure technique completes its full search,
yielding two possible solutions).

“In creating the computer code for the Closure technique, we use, instead of the
maximum flow algorithm, the Aedge disjoint path algorithm, which in our
experience is faster than the maximum flow algorithms for finding disjoint

paths.

56

In the end, it is possible to be able to implement both procedures, since both
methods start off by searching for paths from sto £ The choice depends upon
how many edge-disjoint paths exist from § to f, and how many solutions we
might be interested in. That is, if we want a single solution, then Path Revival is
expected to perform better. If multiple solutions are desired, then Closure
algorithm might be better than Path Revival, although Path Revival has the
distinct advantage of terminating upon finding the desired number of solutions
(one or more, but not all). Also, if there are only a few disjoint paths (one to
four different paths from $to #), then Path Revival is the better choice on sparse

network.

6. Further Discussions

1) While the Path Revival algorithm yields all optimal s-f cutsets for the
solution of the minimum cost §-f cutset problem, it is important to note
that the overall algorithm for the solution of the constrained minimum
cost §-f cutset problem (Graph Collapse + Path Revival) remains a
heuristic. This is due to the fact that employing a different pair of node-
disjoint paths in the Graph Collapse technique can yield different cutset
results. In the example of Figure 2.1, the reader can verify that
choosing path sBJp, instead of path SEp, yields as the solution the
cutset {SE, pE}, which is a solution of lower cardinality than the
previous solution (Figure 2.2), and therefore more desirable.

Clearly, one way to improve the current method to solve the
constrained minimum cost §-f cutset problem is to try different pairs of
node-disjoint paths (one connecting node Sto p (or §) and the other one
connecting node fto g (or p)), and select from the results corresponding
to these different pairs of paths, the best solution. This, of course,
implies greater computational run times, depending upon how many
such node-disjoint pairs exist and are tried. Clearly, one would benefit
from the construction of a A-shortest pair of node-disjoint paths, much
akin to the algorithm for the A-shortest path algorithm (which lists
shortest paths between a pair of nodes in an ascending order) [8]; the 4
shortest pair of node-disjoint paths algorithm would similarly list all the
shortest pairs of node-disjoint paths in an ascending order. To the
authors’ knowledge such an algorithm does not exist in literature.
While the solution to the constrained minimum cost $-f cutset problem
can be improved with the use of multiple disjoint pairs of paths, there is
still no guarantee that the best solution selected would be the optimal
solution, unless all existing node disjoint pairs of paths are utilized,
which would make the problem intractable for large graphs.

57

2) It should be noted that Graph Collapse technique is not just limited to
minimum-cost cut set problem. It could be used to exclude certain
(forbidden) parts of the networks while searching for cut sets using
algorithms. In the example of Figure 2.1, if link Eq is a forbidden link,
we would redefine the given network graph by collapsing the edge Eq
into a single node Eq. This way the forbidden link is never a candidate
link in the cutset determination process.

7. Summary

In this paper we have addressed the mathematical problem of finding a
minimum $-/ cutset that includes a specific edge in an undirected graph (with
each edge having a weight =1). This problem arises in designing and checking
for robustness in networks. Because the problem is hard to solve, we devise a
heuristic procedure comprising two new techniques: Graph Collapse technique,
which reduces the problem to the standard minimum cost §-f cutset, and the Path
Revival algorithm, which allows us to obtain multiple solutions in a sequential
manner; this has the advantage that the algorithm process can be stopped after a
desired number of solutions have been obtained, which is in sharp contrast to an
existing method where all the solutions are obtained simultaneously at the very
end of the algorithm process. As a result, the new Path Revival algorithm is fast
for sparse networks, clearly winning out when a single solution is desired, as
numerical results show.

The above heuristic procedure uses as input the shortest pair of node-disjoint
paths, one connecting the source node to one end of the desired constraint edge
pq and the other path connecting the destination node to the other end of the
constraint edge. Each path of this shortest pair of node-disjoint paths is
collapsed into a single node by the Graph Collapse technique. In principle there
can be several node-disjoint pairs of paths. Since the results of the Graph
Collapse technique are dependent upon which node-disjoint pair is used, the
procedure presented to solve the constrained minimum cost §-f cutset problem is
a heuristic. Optimality of the solutions obtained can be improved by running the
heuristic procedure a number of times against different selected pairs of node
disjoint paths, and selecting the best solution set. In large graphs, this can
become very time consuming. Clearly, a A&node-disjoint pair of paths algorithm
would be highly desirable here. To our knowledge, such an algorithm does not
exist in literature.

58

Appendix A: Taking care of multiple edges
This can be accomplished by inserting a dummy node for each additional edge

connecting a given pair of nodes in the collapsed graph. Figure below illustrates
this concept:

D?

(=) —

A B A B

Figure A.1 Two nodes A and B connected by multiple edges; introduction of
dummy nodes D and D’ eliminates the multiple edges.

59

Appendix B: Maximal Edge-disjoint Path Pair Algorithm for Path Revival
Algorithm.

In this Maximal Edge-disjoint path pair for this problem, we are only interested
in looking for any overlaps between two different paths; the overlapping edges
then become cut-candidates. We are not interested in shortest path length, etc.

Pseudocode for Maximal Edge-disjoint path pair:

With a path given, remove all forward arcs on the path.

Also, let List = {all members on the path}

For each node on the path, label it 0.

Let ListPos = {1} /* We will be trying to get to highest possible position on the
list when searching. If we cannot get to the end of the
list, then top position and next position will be the cut
candidate. */

For first node on the path, label it 1 /* We are starting search from first node.

Each node found will be labeled 1.*/

While(label of last list item == 0)

Let List2 = path(ListPos)
While(List2 is not empty)
Let CurrentNode = List2(1)
Let Label(CurrentNode) = 1
Remove first item from List2.
Search all outward arcs from CurrentNode.
If last node on the path is found, terminate the algorithm, return all cutsets.
If the outward arcs reaches nodes not searched (label == 0),
Label the unsearched node with 1, and add to list2.
If the outward arcs reaches nodes that has label == 1, ignore the node.

end

Select highest positioned labeled node on the List. Highest labeled node and
the next node is established as a cut candidate. Set ListPos to the position of
node after the highest labeled node.

end

60

Appendix C: Comparison of Run Times (sec) between Path Revival
Algorithm and Closure Algorithm; /is the number of nodes in the graph; higher
the value of £, larger the connectivity, and denser the graph; £ is the number of
edge-disjoint paths from the source ($) to the sink (#), which also equals the
cardinality of the minimum cost §-f cutsets found.

Table 1. Sample Data of 1-solution Path Revival vs. Closure; /= 500.

PathRev Closure Difference K
0.0309 0.088 -0.0571 1
0.02575 0.08335 -0.0576 2
0.05435 0.10955 -0.0552 2
0.09105 0.1012 -0.01015 5

0.064 0.11505 -0.05105 6

0.179 0.1666 0.0124 9
0.2097 0.1802 0.0295 10
0.29435 0.2197 0.07465 14

Table 2. Sample Data of 2-solution Path Revival vs. Closure; /=100

PathRev Closure Delta K
0.01615 0.02125 -0.0051 2
0.0212 0.02245 -0.00125 3
0.0279 0.02505 0.00285 4
0.0326 0.02705 0.00555 5
0.03735 0.0282 0.00915 5
0.0497 0.0484 0.0013 8
0.055 0.02865 0.02635 9
0.06415 0.04 0.02415 1

—

Table 3. Sample Data of 2-solution Path Revival vs Closure; /=200
PathRev Closure Delta k
0.02305 0.03715 -0.0141
0.0327 0.0375 -0.0048
0.04605 0.04645 -0.0004
0.0516 0.04815 0.00345
0.06295 0.04805 0.0149
0.0705 0.053 0.0175
0.07985 0.0581 0.02175

0 1 N bW

61

0.1016 0.06885 0.03275 10
0.1132 0.06805 0.04515 11

Table 4. Sample Data of 2-solution Closure vs One-solution Path Revival; /=

100
OnePR Closure Difference

K
0.00985 0.02i25 -0.0114 2
0.0128 0.02245 -0.00965 3
0.01635 0.02505 -0.0087 4
0.02185 0.02705 -0.0052 5
0.0215 0.0282 -0.0067 5
0.0298 0.0484 -0.0186 8
0.0323 0.02865 0.00365 9
0.0399 0.04 -1E-04 1

it

Table 5. Sample Data of 2-solution Closure vs. One-solution Path Revival; /=

200
OnePR Closure Difference k
0.01465 0.03715 -0.0225 2
0.0211 0.0375 -0.0164 3
0.0289 0.04645 -0.01755 4
0.03145 0.04815 -0.0167 5
T 0.03695 0.04805 -0.0111 6
0.0431 0.053 -0.0099 7
0.0485 0.0581 -0.0096 8
0.0607 0.06885 -0.00815 10
0.0642 0.06805 -0.00385 11

62

References

[1]P. Francois, M. Shand, and O. Bonaventure, “ Disruption Free Topology
Reconfiguration in OSPF Networks”, Proc. of IEEE International
Conference on Computer Communications (INFOCOM), Anchorage,
Alaska (2007).

[2] R. Bhandari, §/iding Shortest Path Algorithms, Proc. of the Cologne-Twente
Workshop on Graphs and Combinatorial Optimization, Paris, France
(2009), pp. 97-101.

[3] R. Bhandari, The Improved Sliding Shortest Path Algorithm, Congressus
Numerantium, 203 (2010), pp.175-192, a refereed journal of the 41*
Southeastern International Conference on Graph Theory, Combinatorics,
and Computing, Florida Atlantic University, Boca Raton, Florida, March
2010.

[41 Norm Curet, Jason DeVinney, and Mathew Gaston, An Efficient Network
Flow Code for Finding All Minimum Cost s-t Cutsets, Computers &
Operations Research 29, 205-219 (2002)

[51 Ramesh Bhandari, Survivable Networks: Algorithms for Diverse Routing,

Kluwer Academic Publishers (1998).

[6] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, /ntroduction to Algorithms,
The MIT Press (1990).

[7]1 R. Ahuja, T. Magnanti, and J. Orlin, Netfwork Flows. Theory, Algorithms and
Applications, Englewood Cliffs, NJ Prentice Hall (1993).

[8] J. Yen, Finding the k Shortest Loopless Paths in a Network, Management
Science, 17(11), 712-716 (1971)

63

