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Abstract

Given an undirected, weighted graph, and a pair of vertices s and ¢, connected by
the shortest path, and an edge pg not lying on the shortest path, what is the
minimal change required in the given graph to cause the shortest path between s
and ¢ to pass through edge pg? This is a type of a problem often faced by
network administrators in the telecommunication world. Unfortunately, the
problem is NP-hard and one resorts to heuristics. Recently, a heuristic called the
Improved Sliding Shortest Path Algorithm was presented as an improvement of
an earlier heuristic. In this paper, we provide a detailed numerical comparison of
the two algorithms and demonstrate the superiority of the improved version via
applications to real-life networks.
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1 Introduction

Telecommunication network management often requires that traffic flows over a
network be adjusted to move congestion from overloaded links to underutilized
links [2-5]. Each link in such a network is assumed to have a certain cost of
transmission, and data is assumed to flow from a source to a terminus by
following the least-cost path through the network. In particular, the task of
adjusting the link costs (or weights) to cause a certain network flow to traverse
an underutilized link can be modeled in a graph as the following problem: in a
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given undirected and weighted graph, find a minimal cardinality set of edges
with minimal edge weight changes such that the shortest path between two
vertices s and ¢ will then include an edge pg. The algorithm assumes that a
simple path exists between s and ¢ that includes edge pg, that this path is unique,
and that the modified graph after weight changes has non-zero positive weights.
The problem of finding the absolute minimum number of edge changes required
for the shortest path to pass through edge pg is provably an NP-hard problem
[6], requiring every possible set of edge changes to be compared. Thus,
practical application requires developing a heuristic to make a minimal selection
in a reasonable amount of time. Along with making a minimal cardinality of
edge weight changes, the magnitudes of these changes must also be minimized.
This is because the more edges that are changed or the larger the changes, the
more disturbance there will be within the network. This disturbance can be seen
practically in the convergence time of a network using the Open Shortest Path

First (OSPF) routing protocol [8].

In a recent publication, Bhandari [7] developed an algorithm called the S/iding
Shortest Path (SSP) algorithm to determine a set of positive integer edge weight
changes that may be the smallest for any given graph. His initial algorithm used
a technique of cutting edges until the shortest path from s to t included edge pg.
By modifying this algorithm to increment edge weights instead of cutting edges,
the SSP algorithm accomplishes the task of forcing the shortest path from s to ¢
across a given link pg. In a later publication, he developed an improved
algorithm that combines the SSP algorithm with negative weight changes along
the desired shortest path from s to ¢ that includes the edge pg [6]. This
algorithm, called the Improved Sliding Shortest Path (ISSP) algorithm,
incorporates all possible solutions of the SSP and adds the potential for solutions
using negative edges weight changes. Because the solution set of the ISSP is a
superset of the solution set of the SSP, the ISSP will always output a solution
that changes the same number or fewer edge weights than the SSP.

In this paper, we attempt to quantify the improvement of solutions output by the
ISSP over solutions output by the SSP. By executing both algorithms for the
same choice of s, ¢, and pg, our goal is to demonstrate that the ISSP algorithm
provides better solutions than the SSP. We vary the choice of s, ¢ and pq to
demonstrate the types of graphs and choices of source and destination where the
ISSP shows the most improvement. The paper is organized as follows: Section
2 considers the formal definition of the problem, Sections 3 and 4 revisit the
definitions of the SSP and /SSP algorithms respectively, Section 5 describes our
experimental setup, Section 6 presents our quantified results, and Section 7
offers concluding remarks.
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2 Problem Definition

Let a graph G = (V, E), composed of the vertex (node) set ¥ and the edge (link)
set £, be an undirected, weighted graph where all edge weights are positive
integers (> 0). We assume there are no loops or multiple edges in G. We also
assume that G is bi-connected, (i.e. for any two vertices s and ¢ and any edge pg,
there exists a path from s to ¢ crossing pg that visits each vertex in the path
exactly once). This type of path (i.e. simple path) is referred to in the remainder
of the text as a path. Our final assumption is that traffic crossing this graph
from one vertex to another flows along a single shortest path.

Let SP(s, t) be the shortest path between the given vertices s and # in the graph
G. Given any edge pg in G, let T, be a set of edges within the graph G whose
weights are changed to alter the given shortest path, forcing SP(s, ) to cross the
edge pg. We denote the number of edges in T, as |[[)|. The problem is stated as

follows:

Given an undirected, weighted graph G = (V,E), a pair of vertices s, ¢ € V, and
anedgepg € E,

minimize [Ty ¢))

subject to arc pg (or arc gp) € SP(5,¢)

Intuitively, the problem is to force the shortest path from s to # to cross a given
edge pg by changing the weights of as few edges as possible. This problem is
proven to be NP-hard [6]. This NP-hard nature is the motivation for developing
and comparing the performance of the heuristics outlined in the next sections.

3 The Sliding Shortest Path Algorithm
For reference purposes, we summarize the SSP algorithm from [6] below.

Given an undirected, weighted graph G = (¥, E), the SSP algorithm will
calculate a minimal cardinality set of positive edge weight increments which
force the shortest path between two vertices s and  to cross a chosen edge pgq.
The algorithm assumes that a simple path connecting s and ¢ and including edge
pq exists, and that the shortest path connecting s to ¢ and crossing pq is unique.
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The algorithm begins by calculating the desired shortest path from s to ¢ which
crosses the edge pg by computing the shortest pair of vertex-disjoint paths [9,
10], one connecting s to one end of pg and the other connecting # to the opposing
end of pg. The algorithm calculates these paths simultaneously and determines
if the shortest path from s to ¢ crosses pg from node p to g or vice versa, and
selects the shortest pair. The algorithm states that the cost of the desired shortest
path is the sum of the edge costs in the path connecting s to p (or g), the cost of
pg, and the sum of the edge costs in the path connecting ¢ to g (or p). Starting
from vertex s, the algorithm increments iteratively the weight of the first edge on
the current shortest path from s to ¢ that does not lie along the desired shortest
path crossing pg until the shortest path crosses pg. The incremented amount in
each iteration is always the difference between the cost of the current shortest
path and the cost of the desired shortest path plus one. The algorithm then
repeats, this time starting from vertex . Once the algorithm has executed in
both directions, the solutions are compared, and the solution requiring fewer
edges to change weights on is returned. A full description of the algorithm,
proofs of correctness, and an example can be found in [6].

4 The Improved Sliding Shortest Path Algorithm

For reference purposes, we summarize the SSP algorithm from [6] below.

Given an undirected, weighted graph G = (¥, E), the ISSP algorithm will
calculate a minimal cardinality set of positive and/or negative edge weight
changes which force the shortest path between two vertices s and ¢ to cross a
chosen edge pg. The algorithm assumes that a simple path connecting s and ¢
and including edge pg exists, and that the shortest path connecting s to ¢ and
crossing pg is unique. One critical assumption to this algorithm is that every
edge weight in the graph remains a positive integer. Thus, any edge weight
decrement for a given edge ¢; with weight w, must be less than or equal to w, — /.

The ISSP functions like the SSP, but also explores for decrements on the edges
of the desired final path. Prior to incrementing the first edge not on the desired
shortest path, the /SSP decrements the edges on the desired shortest path that are
not on the current shortest path to make the desired shortest path shorter than the
current shortest path. Further adjustments (increments on some other edges) may
be needed to ensure that the desired shortest path is indeed the shortest path in
the graph. These decrements (along with the other possible adjustments) then
constitute one potential solution. Solutions obtained in subsequent iterations are
always a mixture of increments and decrements. At the start of each iteration
(providing a possible solution), the weights that were decremented in the earlier
iteration, along with other weights that might have been incremented, are reset
to the weights in the original graph. The algorithm recalculates the current
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shortest path and increments the weight of the first edge along this newly
recalculated shortest path that is not on the desired shortest path (as in the SSP
algorithm), and then subjects the non-overlapping part of the desired shortest
path to decrements (and adjustments) as described earlier. . This produces
another potential solution, which includes one increment and a set of decrements
(and adjustments). Each subsequent iteration adds a new increment on an edge
of the current shortest path, and the algorithm terminates when the current
shortest path passes over the edge pgq. From the set of solutions obtained (one in
each iteration, with the first solution comprising all decrements (and some
possible increments), the last comprising all increments, and the intermediate
solutions mixtures of increments and decrements), one selects the solutions with
the minimal cardinality. In a practical implementation, one obtains the optimal
solutions dynamically, discarding solutions found, if they are worse than the
previous, and also discarding previous solutions if they are worse than the
current. A complete and full description of the algorithm, proofs of correctness,
and an example can be found in [6].

5 Experimental Setup

Figure 1. The first test graph.

To compare the performance of the SSP and the ISSP algorithms, we selected
two graphs simulating real-life networks. As in the work by Coleman and Moré
[1], we define the density D of a graph G = (¥, E) as:
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where |V] is the number of vertices in G and |E| is the number of edges in G.
The density of a graph relates the number of edges in a graph to the number of
edges possible in a graph. It ranges from a graph with no edges, with density 0,
to a complete graph, with density 1. The first graph, pictured in Figure 1, is
composed of 78 vertices, and has a density of approximately 0.038. The second
graph, pictured in Figure 2, is composed of 51 vertices, and has a density of
approximately 0.068. To capture the exact nature of the ISSP algorithm’s
improvement, we performed two separate experiments.

Figure 2. The second test graph

In our first experiment, we selected two nodes s and ¢ from our test graph where
each edge is assigned a random weight from 1 to 100. For the given choice of s
and ¢, we ran both the SSP and the ISSP once for every possible choice of edge
pq. For 6-7 different s- paths, we collected the following statistics:

+  Percent Changed (Chng): the percentage of pg edges where the ISSP
produced a better solution than the SSP
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*  Percent Improved (Imp): For the pg edges where ISSP produced a
better solution, the average percentage decrease in edges changed from
the SSP

*  Global Improved (G_imp): For all pq edges tested in the graph, the
average decrease in edges changed by the /SSP

*  Maximum by ISSP (MaxNew): The maximum number of edges
changed for any single execution of the ISSP

¢ Maximum by SSP (MaxOld): The maximum number of edges changed
for any single execution of the SSP

" After completing the first experiment, we repeated it 50 more times, re-
randomizing the weights in the graph after each iteration and reporting all
statistics as an average over the 50 trials.

The second experiment, we selected a link pg from our test graph where each
edge is assigned a random weight from 1 to 100. For the given choice of pg, we
ran both the SSP and the ISSP once for a selection of 12 possible choices of path
s-t. For 7-8 different pg edges, we collected the following statistics:

»  Percent Changed (Chng): the percentage of s-t paths where the ISSP
produced a better solution than the SSP

¢ Percent Improved (Imp): For the s-t paths where ISSP produced a
better solution, the average percentage decrease in edges changed from
the SSP

*  Global Improved (G imp): The global average decrease in edges
changed by the ISSP

*  Maximum by ISSP (MaxNew): The maximum number of edges
changed for any single execution of the ISSP

*  Maximum by SSP (MaxOld): The maximum number of edges changed
for any single execution of the SSP

After completing the second experiment, we repeated it 50 more times, re-
randomizing the weights in the graph after each iteration and reporting all
statistics as an average over the 50 trials.

6 Performance Analysis

Experiment 1: For the s-f paths selected, we classified them in a range of “far”
to “near”, where the number of edges in the original shortest path connecting s
to ¢ ranged from 17 for the “farthest” pair to 1 for the “nearest” pair. For the s-¢
paths where s and ¢ were spread farther apart, the new algorithm showed
dramatic improvement over the old algorithm. In the first test graph, this trend
is apparent both in the number of cases improved (Chng), as well as the decrease
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in the number of edges changed (Imp). In the second test graph, the trend is less
apparent in the number of cases that improved, but still strongly present in the
decrease in the number of edges changed.

Table 1 Experiment 1, test graph 1, single weight results: All averages taken
over one graph testing all possible edges pq for the chosen path s-t. The paths
are arranged from the farthest pair (1-53) to the nearest pair (60-70)

s t Chng(%) Imp(%) | G imp(%) | MaxNew | MaxOld
1 53 50 36 24 12 12
9 |73 45 31 20 ‘ 8 10
25 130 47 23 13 10 11
13 | 55 47 38 20 6 10
29 | 47 35 19 07 12 12
60 | 70 12 27 03 11 11

Table 2 Experiment 1, test graph 1, randomized weight results: All averages
take over one graph structure, randomizing the weights 50 times and testing all
possible edges pq for the chosen path s-t in each random edge weight set. The
paths are arranged from the farthest pair (1-53) to the nearest pair (60-70)

s t Chng(%) | Imp(%) | G _imp(%) | MaxNew | MaxOld
1 53 46 35 19 11 12
9 |73 50 41 27 7 10
25 | 30 38 29 11 10 11
13 | 55 41 36 19 8 9
29 | 47 39 22 09 12 12
60 | 70 24 22 06 11 12

Table 3 Experiment 1, test graph 2, single weight results: All averages taken
over one graph testing all possible edges pq for the chosen path s-t. The paths
are arranged from the farthest pair (7-19) to the nearest pair (9-43)

s t Chng(%) | Imp(%) | G imp(%) | MaxNew | MaxOld
7 19 61 45 35 7 9
12 ]33 67 36 29 8 11
16 | 34 88 35 32 8 11
38 |48 75 33 28 12 15
15 |27 90 27 26 12 14
5 46 49 41 27 7 8
9 43 81 53 44 5 8
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Table 1.4 Experiment 1. test graph 2 results: All averages take over one graph
structure, randomizing the weights 50 times and testing all possible edges pq for
the chosen path s-t in each random edge weight set. The paths are arranged from
the farthest pair (7-19) to the nearest pair (9-43)

S t Chng(%) J Imp(%) | G _imp(%) | MaxNew MaxOlcﬂ
7 19 67 | 41 31 7 9
12 |33 63 40 30 7 10
16 | 34 78 32 27 9 12
38 |48 73 30 25 11 14
15 |27 80 33 30 11 14
5 |46 65 42 34 7 10
9 |43 65 45 35 | 6 10

The reason for the /SSP algorithm’s improved performance in the case where s
and ¢ are far apart is that the difference between the current shortest path and the
desired shortest path is small. Since more of the pq links lie generally in
between s and ¢ when they are farther apart, the difference between the two
paths can be absorbed more easily by decrementing along the desired shortest
path. Also, since there are only a limited number of edges along the desired
shortest path that can be decremented, the difference between the cost of the
current shortest path and the desired shortest path must be small for edge
decrements to effectively shift the shortest path. By contrast, when s and ¢ are
generally closer together. the pg edges spread around the graph create a large
difference between the desired shortest path cost and the current shortest path
cost. For these pg edges, simply decrementing along that path is not enough to
absorb this large difference. Thus, numerous increments are required to bring
the difference down. In practice, the extreme edge increments may cause
bottlenecks since routers will avoid sending traffic across the incremented

edges.

Density of the graph also factors into the problem in a similar way. The more
possible paths there are between s and ¢, the more edges that have to be changed
to force the desired shortest path to be shorter than all other possible paths from
stor. Thus, there is less improvement between the new and old algorithms with
more dense graphs than with more sparse graphs. However, since our
application is considering telecommunication networks, which tend to be sparse,
density plays only a small role in our experimental results.

Experiment 2. For the pg links considered in our experimentation, we

classified them in a range of “central” to “peripheral” based on their position
within the graph. To quantify this concept, we state that if an edge is central
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within the graph, then the shortest path from either endpoint to any other vertex
in the graph will contain a small number of edges. If an edge is peripheral
within the graph, there will be a vertex on the opposite side of the graph such
that the shortest path from an endpoint to that vertex will contain a large number
of edges. In our example graphs, the most central edges can be connected to any
other vertex in the graph by a path containing only 5 edges while the most
peripheral edges have some vertex that is at least 17 edges away from one
endpoint. For the pg links where pg was located “centrally”, the new algorithm
again showed marked improvement over the old algorithm. However, when the
pq link was located “peripherally”, there was little difference between the two
algorithms performances. As in test 1, this difference is always highlighted by
the percentage decrease in edges changed, but only partly shown in the number
of cases that improved.

Table 1.5 Experiment 2, test graph 1, single weight results: All averages taken
over one graph testing twelve possible s-t paths through the chosen edge pq. The
paths are arranged from the most central constraint edge (27, 31) to the most
peripheral constraint edge (4, 11)

| Chng(%) | Imp(%) | G_imp(%) | MaxNew | MaxOld
27 | 31 70 53 38 3 5
71173 40 14 07 12 13
41 60 67 43 26 8 8
2129 38 46 29 3 6
48 | 49 67 21 18 11 12
34|35 44 43 27 4 6
56 | 57 11 14 02 9 9
4 |11 00 00 00 11 11

Table 1.6 Experiment 2, test graph 1, random weight results: All averages take
over one graph structure, randomizing the weights 50 times and testing 12 s-t
paths through the chosen edge pq for each random edge weight set. The paths
are arranged from the most central constraint edge (27, 31) to the most

peripheral constraint edge (4, 11)

q_ | Chng(%) } Imp(%) | G imp(%) | MaxNew | MaxOld
27 | 31 57 41 29 4 6
71173 23 10 04 13 13
41 1 60 43 32 16 7 8
21 129 43 41 23 3 4
48 | 49 62 32 24 8 9
34 | 35 60 44 31 4 5
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56 | 57 36 26 10 9 9
4 |11 10 16 03 9 10

Table 7 Experiment 2, test graph 2, single weight results: All averages taken
over one graph testing twelve possible s-t paths through the chosen edge pq. The
paths are arranged from the most central constraint edge (16, 21) to the most
peripheral constraint edge (24, 34)

p 1 g | Chng(%) | Imp(%) | G imp(%) | MaxNew | MaxOld
16 | 21 58 38 32 6 9
26 | 32 64 39 32 4 7
36 | 41 58 24 14 14 14
17 | 22 73 - 43 39 6 8
28 | 29 33 17 08 10 11
6 11 40 31 20 6 9
24 | 34 50 4] 30 4 6

Table 1.8 Experiment 2, test graph 2, random weight results: All averages take
over one graph structure, randomizing the weights 50 times and testing 12 s-t
paths through the chosen edge pq for each random edge weight set. The paths
are arranged from the most central constraint edge (16, 21) to the most
peripheral constraint edge (24, 34)

p | g | Chng(%) | Imp(%) | G _imp(%) | MaxNew | MaxOld
16 | 21 70 41 35 6 8
26 | 32 75 44 37 4 7
36 | 41 46 23 13 11 13
17 | 22 66 37 29 6 7
28 | 29 71 32 26 8 12
6 |11 75 40 34 7 10
24 | 34 59 43 32 4 6

When the pqg link is centrally located, a random s-¢ path will most likely pass
through or near the link already. Again, this causes the difference in the desired
shortest path and the current shortest path to be generally small, requiring only a
few edge decrements to absorb the difference between the two. However, when
edge pqg is on the periphery of the graph, a larger number of s-¢ paths will have
to diverge significantly from their current shortest path to cross pg, creating a
larger difference in the cost of the current shortest path and the desired shortest
path. Again, this will require a more significant number of edge increments to
absorb the difference, which makes the two algorithms perform similarly.
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7 Summary and Discussion

In this paper, we have compared two heuristics designed to shift the shortest
path through a graph to cross a chosen edge by making a minimal number of
edge weight changes. The first algorithm, the SSP algorithm, only considers
solutions that make positive edge weight changes. The second algorithm, the
ISSP algorithm. expands upon this solution set by also considering negative
edge weight changes. To quantify the improvement of solutions produced by
the ISSP, we examine a number of statistics taken over two test graphs designed
to simulate telecommunications networks. Our results conclusively show that
the ISSP produces more efficient solutions in a majority of cases, and in some
cases can reduce the number of edge weights changed by 53%. The amount of
improvement from the ISSP is maximized when the difference between the cost
of the desired shortest path and the cost of the current shortest path is small.
These results would be of significant interest to the telecommunication network
operators, employing algorithms to move the traffic around to achieve optimal

throughput.
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