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Summary. — We discuss the generalization of the results of the coupled-channel
K-matrix formalism as applied to scattering of stable particles to the case which involves
isobars. In the process, we develop the phase-space integral for the quasi-two-body
channel and show that its upper limit is co in agreement with the general principles of
analytic continuation of a partial-wave amplitude. In the past, the validity of this
upper limit for the integral has not been fully clear.

In extending the results of the coupled-channel K-matrix formalism for the two-
body scattering to the case in which one of the inelastic channels is replaced by a quasi—
two-body channel, confusion has arisen in the past (1) as to whether the upper limit
of the ensuing phase-space integral for this quasi-two-body channel should he oo or
not. A channel consisting of a stable particle and an isobar (such as the A, g, etec.)
is referred to as a quasi-two-body channel. In this letter, we present a simple mathe-
matical generalization of the results (?) for the stable two-body scattering to the case
involving an isobar. In the process, we generate the afore-mentioned integral, showing
that the upper limit of oo is a requirement imposed upon us by the general principles
of analytic continuation of a partial-wave scattering amplitude into the complex-
energy plane.

It is well known (3) that the S-matrix for n + 1 coupled channels can be expressed as
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where the reduced K-matrix and the phase space matrix ¢ are (n + 1) X{n + 1)
matrices. The latter is diagonal in the phase-space factors of the channels (labelled
in ascending order of threshold energy) with ¢,;, = g,, the phase-space factor for the
elastic channel. Since these phase-space factors are characterized in general by a
threshold dependence of the form ¢%+!, where ¢ iz the cenfre-of-mass momentum
and I the relative orbital angular momentum, we assume for simplicity that these are
of the form

(2) Qe = Q?z‘+1fi(E) s

where E is the centre-of-mass energy and ¢ denotes the 4-th channel. The function
f(E) is a slowly varying function of E near the corresponding threshold. The uni-
tarity condition: §+8 = 1 implies that K is Hermitian. But time reversal renders it
symmetric and thus real on the real energy axis. Consequently, K is free of threshold
cuts. Writing the S-matrix further as

() 8 =1+ 2ipiTgt,

where T is the reduced scattering amplitude matrix, and comparing it with eq. (1),
we find

(4) T = K(I —ipK)-1.

This equation yields for the reduced elastic-scattering amplitude the expression (3)

(5a) T T X,
a = = -,
¢ - l_iQeKe
where
(5b) K, =K, + iKO( —iph K&)-1o() FOT
and
(6) IO = (1 + 49, T, ) KOOI —ipt KD)1,

The conventional elastic-scattering amplitude (shown in argand plots, ete.) is of course
obtained here by multiplying 7, with o,. K, = K;;, K% is the nxn part of the
K-matrix connecting inelastic channels to each other, H® is the 1 X% row vector that
couples inelastic channels to the elastic channel, K©T ig its transpose, I is a n Xn unit
matrix, ¢ is the n xn diagonal matrix in the inelastic phase space factors, T'® is the
I xn part of the first row of the T-matrix and consists of the inelastic amplitudes.
When the energy ¥ is such that all the channéls are open, g, are real and the
unitarity relation giving the imaginary part of elastic and inelastic amplitude reads

n+1

(7) Im Ty; =3 Tz(Re (gu)) Trs j=1,..,n+ 1.
k=1 .

The cross-sections are given by

(8) oy~ | Ty]? Re (g,) Re (g;) j=L.,n+1.

If the energy is decreased to a point where only the first r channels are open, the proper
procedure for analytic continuation of the amplitudes, T;, consists in letbing gu—
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—1i|gy| for all k> r. The unitarity relation, eq. (7), now contains only the first r
terms for all §, and also ¢,; = 0 for j > 7.

For the extension to the case involving the isobar, we first assume that there is
a single inelastic channel which is quasi-two-body in nature. The production and
subsequent decay of the isobar in the inelastic process is shown schematically in fig. 1.
The amplitude for this process can be expressed as

(9) T(E, m) = t(E, m)B(m),

Fig. 1. — Production of an isobar in conjunction with particle 3, and its subsequent decay into par-
ticles 1 and 2. L and I are the relative orbital angular momenta in the production and decay pro-
cesses, respectively.

where #(I/, m) is the amplitude for the production of the isobar (corresponding to a
mass m) at energy E, and B(m) is the amplitude corresponding to its decay. Assuming
that the centrifugal barrier effects as well as any dependence of the amplitude for
production of the isobar on its mass m can be factored out, we can further write

(10) HE, m) = UE) (B, m)*f(m)
and
(11) B(m) = B(m)q(m)igim),

where k& and ¢ are the centre-of-mass momenta in the production and decay process,
respectively. The functions f(m) and g(m) contain any other dependence on m. They
are slowly varying near k = 0 and ¢ = 0, respectively, and do not possess any
threshold behavior. The function B(sm) is the familiar Breit-Wigner propagator given by

1
(12) B(m) = o m T2
Now
(13) do(B, m)~ |T(E, m)|*k(E, m)q(m) dm = |{(E)[* dP(E,m),
where
(14a) dP(H, m) = o(H, m)dm,
(14b) (B, m) = k(E, m)?+ig(m)2+1| B(m)|? | F(m)]?,

(1e) F(m) = f(m)g(m) .
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Integrating over m,

(15) o(B) ~ [{E)[2P(B) ,
where
E—3,
(16) P(B) = [o(B, m) dm,
M

M= M,+ M,. The integral in eq. (16) implies the sum of contributions of a con-
tinuum of two-body states with threshold for production varying from My + M,
to E. The limit B — oo corresponds to the situation in which all the effective two-
body states, 4.e. with threshold energies extending up to F = oo, participate in the
production process. In other words, the upper limit of the integral in eq. (16) becomes oo.
If F is subsequently decreased to some finite value, then, for the closed (effective) two-
body channels with threshold energies in the continuum between E and oo, the analytic
continuation takes place by letting o(E, m) — i|e(E, m)| for all m between E — M,
and oo. Thus if we write

@

(17 P(B) = j}_»(E, m) dm,
Hp
then
(18) P(E) = P(E) + i Im (¢()) .

where Im @(F) originates from integration over the phase space for a continuum of
the closed two-body channels for which m varies from H — M, to co. In what follows
we explicitly caleulate ¥(E) within the framework of the K-matrix formalism. The
resulting form of #(F) inolves not P(H), but ¢(F).

Consider the following special case for n + 1 coupled channels when there are only
stable particles present:

K, kK, K, .. K, 0. O
K, K, K, .. K, 0 Q1
(199 K=|xr, K, K, K |- e=10 0 g
K, K; K, .. K, 0 0 0 . o

For the above special case, T, and T®, given by eqs. (5) and (6), respectively, reduce to

Ke

(20a) T,=
1—ig K,
where
n
K%Z Q;

(200) K =K, +i—"= —

1—iK; Z 95

i=1
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and
(21a) Ty=T,, l<k<n+1,
where
(21b) To= (1 +ig,T.) —
1—iE;> p;
=1

If we now envision a quasi-two-body channel as a continuum of two-body states
with the amplitude for production factorizable as in eq. (10), the reduced K-matrix
representing the coupling of the elastic channel and this quasi—-two-body channel assumes
the form of eq. (19), with # — co. The g-matrix is also enlarged to a matrix of infinite
dimensionality with each diagonal element in the part o9 equal to o(F, m) of eq. (14b).
As a consequence, in eqs. (20b) and (21b),

(22) i 0; —>f@(E, m)dm ~ @(F)
=1

iy

of eq. (18). T, is now the inelastic amplitude which is a function of F ounly, and is to
be identified with I(E) of eq. (10).

Thus we see that the treatment of an isobar which in principle involves matrices
of infinite dimensions is reduced to one in which only a calculation of an integral is
required. This integral called the quasi-two-body phase space factor plays the same
role as the phase space factor in the stable two-body case. Its analytic structure, how-
ever, is very different, and is discussed in detail elsewhere (4).

If now there are two or more inelastic channels (all quasi-two-body in nature),
and we consider the production of each isobar as an entirely separate reaction, the
results obtained from a similar treatment such as above can be cast into the forms
of eqs. (5) and (6). We refrain from showing this explicitly here because of the long,
tedious (although straightforward) algebra involved. However, we do wish to emphasize
that the p'¥ matrix is composed of @,’s, each one of which is a complex number (5). The
K% matrix expresses coupling among the inelastic channels and K@ between elastic and
inelastic channels, as before. In fact, eqs. (5) and (6) are general equations for coupling
of multi-channels regardless of the nature of the individual inelastic channel. The phase
space factors in ¢¢? are of the form as expressed in eq. (2) or eq. (9), according to as
the channel is composed of stable particles or is a quasi-two-body channel.

Finally, if we redefine the scattering amplitude matrix as

(23) T'= (Re (o))} E(I —igK)(Re (g))t,
then
(24) oy~ | Tyl

The form in eq. (23) satisfies the unitarity relation

(25-17a) Im(T") = T'+1",

() R. BHANDARI: Phys. Rev. D, 25, 1262 (1982),

(®)) The @D s used in (*) are real numbers,
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which is the equivalent of

(25-17b) Im (T) = T*+(Re () T,

where 7 is of the form as defined in eq. (4). It may also be noted that T is real
analytic.

In summary, we have shown that the results of scattering involving stable particles,
when generalized, yield a phase-space integral for a quasi-two-body channel. The upper
limit of this integral is infinity, as a consequence of which the integral is a complex
number. The need for such a clarification is important especially in view of the isobar
approximation frequently used in the hadronic scattering phenomenology for the treat-
ment of three-body final states. For example, in nucleon-nucleon (which is currently
of great interest because of the possiblity of dibaryons), pion production at medinm
energies is assumed to originate in the A isobar produced first in conjunction with a
nucleon. Also, as pointed out earlier, the phase-space integral in (1) is not a complex
number.




