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Summary. — Recent comprehensive partial-wave analyses of the world nucleon-
nucleon elastic scattering data show structure in the 3F; partial-wave scattering ampli-
tude in the (2.15-2.30) GeV centre-of-mass energy region. Inferpreting this structure
as the result of a resonant behaviour, we present a complete set of resonance para-
meters by representing the amplitude as a smoothly varying background plus a resonance.

The idea of dibaryon resonances has always been controversial (!). Recently, the
observation of structure in Aoy (the difference between the proton-profon total cross-
sections for parallel and antiparallel longitudinal spin states) at intermediate energies
(~(2.15+2.35) GeV) rencwed further interest in their possible existence (?). In fact,
Hipaxra et al. (3) interpreted the afore-mentioned structure as being due to a resonant
behaviour in the 3F, nucleon-nucleon partial-wave amplitude. I'urthermore, in roughly
the same energy region, recent independent, comprehensive analyses (%9) of the world
nucleon-nucleon scattering data show sharp energy variation in the 3F, phases. In
order to understand the origin of this observed structure, several authors (%7) sub-
sequently performed an energy-dependent coupled-channel T-matrix analysis of the 3F;
partial-wave amplitude. An accurate fit to the recent, precise phase shifts of Arndt
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et al. (5) by authors of (7) revealed an influential pole coupled mainly to the NA channel.
In this letter, we report a complete set of the traditional resonance parameters by
fitting a Breit-Wigner form in conjunction with a smoothly varying background to
the 3F, phases of Arndt et al. (3).

By writing the elastic S-matrix element § as a product of the resonant part Sy
and the background Sg, the elastic partial-wave amplitude T is

) T — (8585 —1)/(2) = S T+ T,
where

(2a) Tp= (Sp—1)/(2¢),

(2b) Ty = (S— 1)/(20) .

In terms of the parameter 4 and the phase shift o,
{20) S = 8,8, = 5 exp [2i0].
The Breit-Wigner resonance amplitude Ty is
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where the index j runs over the inelastic channels. The elastic and the inelastic phase
space factors, @, and @;, are functions of the centre-of-mass energy E. The coupling
parameters, y, and y;, and the parameter By are freely varied in the fit. The form for
the background S-matrix element Sy used in the analysis is

2 3
1+ S B+ Y b, B &, — 3 {e2 + d(E — By} 0. D,

(4:) SB: f:l 5:1 % ,
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where E, is the threshold energy for the inelastic channel k. Parameters a;, b;, ¢, and dy
are free. Below H,, @, is completely imaginary. Thus Sy is unitary. That is, |Sg| is
equal to 1 for B,< E< B, where B, and I; are the threshold energies for the elastic
and the Arst inelastic channels, respectively. Furthermore, it is less than 1 for B> Hy.
In a similar fashion, one observes that the S-matrix element Sy obtained from egs. (2a)
and (3) satisfies the same unitarity constraint.

Above a laboratory kinetic energy Ty of ~ 290 MeV, inelasticity in the NN am-
plitudes sets in due to pion production originating mainly in the N’A channel (). The
phase shifts of ARNDT ef al. () presently cxist up to 800 MeV, and have very small
errors. We supplemented these with two data points of Hoshizaki (°) which lie beyond
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Fig. 1. — Fit to the *F, nucleon-nucleon partial-wave phases, using «) VA as the only inelastic
channel, b) N’A and =D (pion-deuteron) as the inelastic channels. 6 is the conventional phase-sghift,
while g is related to the parameter # by % =cos?@. Iy, is the laboratory kinetic energy of the
incident nucleon.

T, =800 MeV. Starting with N°A as the only inelastic channel, we obtained a reason-
able fit shown in fig. (1a)). The phase ¢ is related to the parameter 5 by 5= cos®g.

The fit improves significantly with the inclusion of the pion-deuteron (xD) channel,
and is shown in fig. (1b)). The phase-space factors used for the three channels are

(5a) By= Py = {(B— Exx)(E—1.)}*,
(8b) Oy = Dy, = {(E_ET:D)/(E_"H)}% B
B (5¢) B, Byp = 1 - f {(Ef(ﬂlb\ﬂ—é— M) (M—Mp:dM .
(B —mp)* (M + o) [(M — Mo)? + 17/4]

Mp=M N+

They have the appropriate threshold behaviour corresponding to relative orbital-angulaz-
momentum values of 3,2,1 for the NN, =D and NA channels, respectively.
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Eyp and Epp ave the threshold energies for the NN and =D channels. The phase-
space factor in the case of the NA channel is a quasi-two-body one describing the
production of the A isobar (in conjuncrion with N°) and its subsequent decay into N
and = with a relative orbital angular momentum of 1. Because of its variable mass,
an integration is performed. The Breit-Wigner factor in the denominator corresponds
to a complex mass M —il'/2 for A, which we take to be (1.21-+4.05) GeV. My, My
are nucleon, pion masses, respectively. The parameters 7., r; and 7, which give rise
to left-hand cuts are phenomenological in nature, having values less than Eyy . They
essentially control the behaviour of the phase-space factors, ensuring that they do not
rise to extraordinarily large values away from their respective thresholds. In our fits,
r,, v, and r, were ~1.8, ~1.8, and ~10.5 GeV, respectively. Figure 2 shows the
right-hand unitarity cut structure along with the N’A branch cuts which the elastic
amplitude 7 acquires from the above phase-space factors. The N°A cuts lie on un-
physical sheets associated with the three-body NN’z cut (1), with the first N°A cut
in fig. 2 reached immediately by following arrow 2 from the top of the unitarity cuts.
Cuts at the complex-conjugate position of the NA branch point also occur on these
unphysical sheets, but are not shown in fig. 2. For completeness, we may also remark
that branch peints at E—= M .— o« due to the form factor 1/(3 + «)® (*%) in eq. (5¢)
are also present on these unphysical sheets. But, since the parameter o is assigned a
value greater than — M. (typical value being ~—0.93) in order that these cuts lie
to the left of the elastic threshold, we have not shown them in fig. 2. The above form
factor, it may be noted, also ensures the convergence of the integral in eq. (5¢).
Analytic expression for this integral exists (1°).
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Fig. 2. — The right-hand cut structure of the elastic *F; amplitude T in the complex-E plane.
Because of the close proximity of the N°.V’= and =D channels, a single branch point is shown for them.
Arrows indicate the different unphysical shests that can be reached.

The dip in the phase shift and the bump in the ¢ phase (near ~0.7 GeV) in fig. 1la)
and b) result from the presence of a resonance. Its parameters are calculated from the
following definitions:

i) The mass My of the resonance corresponds to the real energy at which the
real part of the denominator Dy in eq. (3) vanishes.

ii) The full-width I'y=—2 Im Dg(Mg).

© () R. BHANDARI: Phys. Rev. D (in press).
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iii) The ratio of partial-widths to the full width Iy are

exn=Tyx/Trs  Tyx=2y; Pyx(Me)/Ty,
énp = Inp/I'R, I'np = 2?% Crop (M},
exa = Lya/T'w s Tyop = 2y5 Re (Pooa(Mz))/Tx -
iv) The observed pole lies on the unphysical sheet reached from the top of the
right-hand unitarity cuts, and corresponds to D(H,)= 0, where F,= 3 ,—il,/2 is the

pole position. When I',/2 exceeds I'/2=0.05 in fig. 2, it lies on the sheet indicated
by arrow 3. Near the pole, the amplitude T may be expressed as

(6) T=

where R is the residue of the pole. From egs. (1) and (3), one finds that

Su(Ey)yi Dy x(B,)
(0DR(E)[OE)| 55, =

(7) R=—

TaBLE I. — Resonance parameters for the observed 3Fy dinucleon resonance. See text for
definition of parameters.

real part of the pole position, M, (2.218 =2.200) GeV
imaginary part of the pole position, I (0.045 =0.06) GeV
magnitude of the residue R (0.005 +-0.006) GeV
phase of the residue R (—5 —4)°
mass of the resonance, My (2.251 =2.266) GeV
half-width of the resonance, Ig/2 (0.07 +0.10) GeV
elasticity ey (0.11 +0.13)
parameter epp, (0.2 +0.3)

(0.6 0.7

parameter exa

Table I gives the range of values of the resonant parameters determined from the set
of best fits, one of which is shown in fig. 16). The fits being tightly constrained by the
small errors on the data points determine the resonance parameters, especially M, B, My
and e, fairly well. The pole position, especially the real part, is much more stable than
the mass My and the half-width I';/2 of the resonance. Also one notes from the table
that the amount of =D channel in the resonance, although small with respect to the N°A
channel, is nevertheless significant. Figure 3 displays the Argand plot of the ampli-
tude along with its real and imaginary parts calculated as a function of the centre-of-
mass energy F from the fit shown in fig. 18).

In summary, by separating the background from the 3F,; NN partial-wave ampli-
tude, we have determined the parameters of the resonance responsible for the structure
in the (2.15-+-2.30) GeV centre-of-mass energy region. Indications for its existence

‘have existed before (2-48). This particular analysis is a single-channel analysis, utilizing
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Fig. 3. — Argand plot of the *F; NN’ amplitude along with its real and imaginary parts separately
shown as a function of the centre-of-mass energy K. Arrows on the Argand plot are at 50 MeV
intervals with the topmost corresponding to E = 2300 MeV. Any two arrows which are very close
are shown as a single arrow.

a parametrization which has the appropriate unitarity property and the right-hand
cut structure. An essential feature of our fit is the significant coupling of the =D channel
to the resomance., Previous analyses (coupled-channel) (87) either ignore =D channel
completely or do not find it coupled appreciably to the =D resonance.
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