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Scattering coefficients for a multilayered sphere:
analytic expressions and algorithms

Ramesh Bhandari

A calculational procedure for obtaining the complete set of scattering coefficients for a multilayered sphere
is proposed. The procedure is based on the utilization of a prescription which relates the coefficients for an
r-layered sphere to those for an (r — 1)-layered sphere. The prescription is derived directly from the deter-
minantal form of the scattering amplitudes for a multilayered sphere. The complete set of coefficients con-
sidered includes the coefficients required to describe the fields within the various regions of the multilayered

sphere.

I. Introduction

Chylek and Bhandari! recently considered the case
of light scattering by a double-layered sphere in con-
nection with the study of the absorption of visible light
by a water droplet contaminated with graphitic carbon
(soot). Within this double-layered sphere model, the

soot forms a thin concentric shell inside the water.

droplet. Itis acase intermediate between the soot ex-
isting as the core and the soot forming a shell on the
outside of the water droplet. During the course of the
calculation, the present author observed serious nu-
merical inaccuracies in the calculation of the absorption
cross section when the particle size was large compared
to the wavelength of light. In the past several au-
thors?® reported similar problems in the use of analytic
expressions for the homogeneous sphere and the sin-
gle-layered sphere. In the case of the homogeneous
sphere, the technique of employing logarithmic deriv-
atives? has proved to be very successful in resolving the
numerical problems. Recently, Toon and Ackerman®
recast the conventional analytic expressions for the
single-layered sphere in a form amenable to acourate
calculations by using logarithmic derivatives, suitable
ratios, and products of Ricatti-Bessel functions. Itis
the primary objective of this paper to propose a calcu-
lational procedure for a multilayered sphere with an
arbitrary number of layers on top of the core. The
calculational procedure is based on a prescription which
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relates the scattering coefficients for an r-layered sphere
to those for an (r — 1)-layered sphere. This prescrip-
tion, in effect, permits us to obtain the complete analytic
expressions for an r-layered sphere, starting from the
standard Mie coefficients for a homogeneous sphere.
The set of coefficients we give also includes those which
determine the fields within the various regions of the
multilayered sphere.

Recursive methods for multilayered nonplanar con-
figurations have been considered in the past.”® For
example, in connection with his study of the multi-
layered sphere, Wait” used an iterative method based
on an analogy with transmission lines connected in
tandem. The method we provide here utilizes a pre-
scription which is derived directly from an examination
of the determinantal form of the scattering amplitudes.?
This prescription is finally recast into a form which
vields, directly through the iterative procedure, suitable
calculational forms for the scattering coefficients. We
have successfully applied the resulting algorithm to the
study of scattering by a water droplet containing a
concentric shell of carbon within it (a case of two layers
on top of a core).! In another piece of work!® the author
has discussed in detail the case of scattering by such a
sphere in the limit that the inner shell (which is carbon
in the foregoing case of water droplet) is very thin. In
addition, he has worked out the cases of the outer shell
being very thin or the core being very tiny in the scat-
tering of light by a single-layered sphere.}! Such lim-
iting cases, it is shown, provide a good test of the cal-
culational procedure outlined in this paper.

ll. Scattering Coefficients

Following van de Hulst’s treatment!?2 of light scat-
tering by a homogeneous sphere, one can write for each
region j of the (r — 1)-layered sphere (Fig. 1):



Fig. 1. Multilayered sphere which scatters an incident plane wave.12
m;,x; are the refractive index and the size parameter for the ith
region.
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XY — 8; re1lin{mjx) = d§Png(mjx)}
(l<j<r+1). (1b)

mj denotes the refractive index of the material in the
jth region. In what follows, we assume m; = 1 when-
ever j corresponds to the region outside the sphere. In
the case considered here, the value of j for this region
is r + 1 (see Fig. 1). The size parameters are x; =
2wr;/\, where r; are the various radii and A the wave-
length of the plane wave incident on the sphere. The
spherical Bessel functions j, and n, can have complex
arguments by virtue of the general complex nature of
refractive index. x = 2wR/A, where R is the radial
distance. The spherical polar angles 6 and ¢ give the
direction of the scattered light with respect to the in-
cident beam. The functions u ) and v/} satisfy the
scalar wave equation.12

Coefficients a/), ¢ b)) and d¥ are initially
unknown with the exceptions c(’ D=d ,([ D =0 (inside
the core) and c(r r+1) — La(r r+1) d(r r+1) — Lb(r r+1) (0uts1de
the sphere).
outgoing nature of the scattered sPherical wave at r —
w. The scattering amplitudes a;/ Pt and b0t de-
termine the various cross sections in the following
way:

2 »

Oexi = — 2 (2n + 1) Relal (rre1) 4 b(’ ’*”] (2a)
- T n=1
= z (2n + Dlaf P2+ b1, (2b)

The latter are required to ensure the

2 e
Gabs = Oext — 0sc = — 5 (2n + DjRela D + plrr+ 1)
T =1

i [ AR RS LI k) {2¢)

Application of the boundary conditions, namely, the
matching of Hy, H,, Ey, and E; (the tangential com-
ponents) at the interfaces of the different regions (see
Fig. 1), results in two sets of 2r simultaneous equations
One set, associated with the u functions {Eq. (1a)], in-
volves the 2r variables a/” and ¢{ (j = 1andj # r
+ 1), while the other, associated with the v functions
[Eq. (1b)], connects b and d7” (j = 1land j = r +
1), 2r in number. Solution of these simultaneous
equations for the coefficients leads to expressions which
are ratios of 2r X 2r determinants in each case. For
example, the scattering coefficient a{""*" can be ex-
pressed as

aﬁ;‘.l’*—l) = ]\](r,r-{-l)/D(r,r+1)7 (3)
where
m 2 =1 -
Fig. 2. Homogeneous sphere, a single-layered sphere, and a dou-

ble-layered sphere.
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Mt 1¥n{mee1x;) mey, (mex,) mexn{mex.) 0 0 0...0
o (mes1x,) Ynlmex,) Xn(mrx;) 0 0 0...0
0 mePa{mex,—1) mexa(mexe—1)  Mpoin(Mee1Xr—0) Mr=1Xn{Mr=1%r-1) 0...0
0 Ynlmex,—1) Xn{mexe—1) Ynlmy_1xr_1) Xn(MroiXrai) 0...0
Nor+h = 0 0 0 me—yn{me_yxp—3) Mra1Xn (MrmyXraz) .0
0 0 0 Un(Mpmixr_g) XnlMr_13r-2) .. 0
. - 4} 0 :
. : N : : mynlmix:)
0 0 0 0 0... $o(myxy)
Yn(z) = zj,(2) and x,{z) = —2n, () are known as Ri-
catti-Bessel functions. DV in Eq. (3) obtains from
N+ by the replacement of Y,(m,.+ix,) and
Vnlmys1x,) with §(meex,) and {(meq1x,), respec-
tively. {,(2) =y, (2) + ixa(2). The prime denotes the
derivative of the function with respect to its argument.
The foregoing determinants are like the determinants
given by Kerker!3 for a""*1. However, our purpose
here is to formulate a procedure which generates the
complex analytic expression for a"™*V from the
knowledge of Mie coefficients only. As we shall see, this
process also leads to expressions which are utilized in
expressing the coefficients for the fields within the .
sphere.
If now another shell is added to the sphere of Fig. 1,
the sphere becomes r layered. The numerator
N+1r+2) i the scattering amplitude a{**"*? is now
a{2r + 2) X (2r + 2) determinant given by
m]r+2\1/n(mr+2xr+1) ”7'lr+1¢’n(mr+1xr+l) mr1Xn{mre1xe+1) 0 0 0...0
Yulmrsoxrsr) Ynlmre1Xr+1) X;z(mr+1xr+l) 0 0 0...0
0 ’n’r+ 1¢n(mr+1xr) m"r+1Xn (mr+1xr) mr\bn {mpx,) MrXn (mexy) 0...0
0 ¢n(mr+ lxr) Xn(mr+ 1xr) wrn(mrxr) x,n(mrxr) 0...0
Nir+brt2 = 1 0 0 Mol (Mexra1)  MpXn{mexe-y) .0
0 0 0 Ynlmeze—1) Xnbmrxr—1) .0
: : 0 0 :
. . : : : minimixy)
0 0 0 0 0... 11/;1(”1-1361)

According to our earlier assumption m,+o = 1 here and
mr+1 # 1 now. One notes here that the deletion of the
top two .rows and the first and third columns of
N{r+1r+2) yields the N¢7+1 determinant of Eq. (4). To
express the NUt1r+2) determinant in terms of the
N{r+1) determinant we rewrite the former as the sum
of two (2r + 2 X 2r + 2) determinants by sphttlng its
third column in the following way:

l IO | ‘ l mf‘+1}(n(mr+lxr+1) I
1o | J an(mr+1xr+1) -
! imr-&-an Mpg1Xr) l .- | lO |
N+Lr+2) = [ xa(mpsrx,) ... + |10 ...
(1o o 1o [---
it | i .
10 | o -

[Only the third column of each determinant (resulting
from the split) is shown. The rest of the columns are
precisely those of the determinant shown in Eq. (5).]
After interchanging columns 2 and 3 in the second de-
terminant, the above expression takes the form
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”l/r+2¢n(mr+2xr+1) Mg 1 Wn{Mry12041) 0 0 e 0
¢n(mr+2x,+1) \#;,(m,+1x,+1) 0 O i 0
0 Mt 1¥n (M 1%,) Mr41Xn (Mrs1%r) Mg (mexr) ... 0
NG+l = 0 Yalmesx,) Xn (Mt 1%r) Ynlmpxs) ... 0
0 0 Q mr’l’n (m,—xr—l) .0
| | 0 Ynlmex,—1) ...0
l I 0 0 ;
| ! : C myde(myx)
0 0 0 0 Ynlmyxy)
””{r+2\1/n(mr+2xr+1) Mt 1Xn{Mrs1Xr41) Myt 1¥n (Mri1Xp11) 0 .. 0 o
YnlMriox,1q) Xn(Mrs12r41) YnlMrs12r41) 0 ol 0
0 0 My 1¥n{Mmrs1xp) meyn(m,x,) -0
0 0 Yulmes1x,) Ynlmex,) ... .. 0
‘ { 0 mr\z’n(mrxr—l) 0
— ! 0 Ynlmexe—y) ...0
[ ( l 0 |
| | | | |
| | | | myn(mixy)
0 0 0 0 ... Yalmyxy)

Each of these determinants is a product of the (2 X 2)
and the (2r X 2r) determinants shown in the hoxes.
The (2 X 2) determinant in the first of the above two
determinants is the numerator obtained in the case of
scattering by a homogeneous sphere with refractive
index m,1 and size parameter x,+; (remember m, 4o =
1). Henceforth, we will denote it by ng.  On the other
hand, the (2r X 2r) determinant indicated by the box
in the second (2r + 2 X 2r + 2) determinant of Eq. (7)
is nothing but Nr+1) [see Eq. (4)] with m,+; = 1. This
we will denote by N1, Thus

N+1r+2) = nHNf;,H'I) - ﬁHNf,’;’*”, (8)
where

nyg = na{Mre2,Mre1,%r+1)
= Mt o¥n (Mt axre )W n{mes12,41)
= Mps ¥a(MrsoXrr DWn (M 1Xrr1), Merz =1, (8a)
itk = Mrso¥n (Mrso2rse 1) Xn(Mrs1%r41)
= M (W (Mt 2% )X (Mpg 1 X4}y Mpaz =1, (8b)
N(r,H—l) = Nﬁ,’,‘”’l) (8¢)
. m s ?
with 11br1(7tl'r'+ lxr)y\bn(mr-i-lxr)
Xn (Mp11%:),Xn(Mry1%,), respectively.

Equation (8), which relates N+1r+2) to NI7+1 g
the general prescription for building analytical ex-
pressions for a multilayered sphere, starting with the
homogeneous sphere. When r = 1 (homogeneous
sphere, see Fig. 2)

N0 = NOUD = ny(momixi) = man(max ), (mixy)
= mn(mex )W¥n(mix1) = Wilme = 1). (9a)

For r = 2 (single-layered sphere, see Fig. 2),

NOr+D = N23) = nu{ma,ma,x) N&?
- Ag(ma,mex )N = W We — Wo W, (9b)

whefe ~
W = man{maxa)xn(maxs) — mafp{maxo)xn(maxs),

We = maxn{max Walmix1) — mixa(max)yn(mix1),

replaced by

Wa = maln(maxo)n(maxe) — maWn(msxa)i, (maxs),
: (ms = 11.

and W is the same as in Eq. (9a) except that my # 1.
For r = 3 (double-layered case, see Fig. 2),

NCD = NGO = nylmamars) V@
— Ag(mamaxg)NES
= W3(WsWe — WeWy) — Wy(WoWs — W Wy, (9c)

where

Wa = mgfn(mexs)P,(maxs) — malnlmaxs)ds(maxs),
Wi = mabn(maxsyx,(maxs) — mal,(maxs)xa(maxs),
W5 = maxn(maxa)¥n(maxs) — maXa(maxa)yn(maxa),

Ws = maxn(maxa)Xn(maxe) — maX,(maxs)x.(maxs),
' (m4 =1},

and W, Wy, Wo, W are the same as in Eq. (95) except
that mg » 1. N+ for higher values of r can be
similarly generated. The function D~"+1 in general
is obtained from N{+1) by replacing ¥, (m,41x,) and
its derivative with {,(m,4x,) and its derivative. The
scattering coefficient ay"*V is thus analytically ex-
pressed through Eq. (3) without having to deal directly
with the (2r X 2r) determinant of Eq. (4). In fact, it
may not be inconceivable to write a computer program
which generates the scattering coefficient a{" Y using
the foregoing procedure for an arbitrary value of r and
subsequently computes it. For more on the computa-
tional aspect, see Sec. II1.

In an identical fashion, one expresses the coefficients
al™ (@G =1,...r)and ¢ (i =2,...r) which are
needed to describe the fields within the sphere. For
example,

a’(_‘l',f‘) — N(r,r)/D(r,r+1)’ (10)
where
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mr+1§-n(mr+1xr) mr+1\{/n (mr+11r) m:‘r)(n (mrxr) 0 O 0
nlmre1x,) Ynl(mrex,) Xnlm x,) 0 O i 0
0 0 meXn(Mrtr—y) Mp—1¥n (Mp_1%p1) My—1Xn (Myr—12—3) -- .0
0 0 X n(mex,—1) Yalme—1x—1) p CLCPESE ) [ 0
N = 0 0 0 me—1dn (me—yxr—9) M1 Xa(me—1x,-2) ...0}] + (11)
0 0 0 l!/ln(mr—lxr—~2) X;L(mr—lxr—z)“ ------- 0
| | | 0 0 :
[ I ' ‘ I ........ mp,l/,l(mlxl)
0 0 0 0 O ... Yalmyxy)

[Compare the above with Nv’*1 in Eq. (4) and
Dr+l ] N is the product of the determinants
corresponding to the matrices shown in the boxes. The
(2 X 2) determinant yields i since m,4+; = 1. The other
determinant is nothing but NZ~%". Thus

N = (i)N(’;—ll)/D(r,r+1). (12)
Through similar considerations, one finds that in gen-
eral

L (=i mame . . m)NGW '
alril = o ml 2 Do a<sy<r). 13
1 PR j IS

Similarly,

—1y—=j-1 [ G-13
e = CRCTmima - )ON 2o g g
" (mymsa. .. mj)D"'v"“) ’

¢ = 0, as pointed out earlier.

NG and Ny~ are deﬁned in Eq. (8¢) and the pre-
cedlng paragraph. NQD
Equations (9a)- (9c) are expressions involving 2 X 2
determinants such as W{,Ws, etc. If the refractive in-
dices appearing as factors in the 2 terms of each of these
determinants are interchanged, expressmns defmlng
alrr+y automatlcally become expressions for b0 (¢
= 1, .r +1). Asanexample,

b$,2'3) = N@31/p@3), (15)
where
,v N@3) = WoWe — WoWy (16)
as in Eq. (9b), but with W,, W,, W, and W defined in
the following way:
Wi = mign(max)¥n(maxy) = maf(maoxi)n (myxy),
W7 = mayn(maxg)xn(maxs) — map(msxe)Xa(maxa),
We = mixn(mex Jn(mix1) = maxp(mex ) (mixy),
Wi = mapn(max¥n(maxe) — madn(maxa¥n{maxa),

(mgz=1).

Compare this set of W functions with the set in Eq. (9b).
Similarly, the coefficients b7 and d{ are derived
from a%” and ¢ of Egs. (13) and (14), respec-
tively.

For completeness, we point out that the scattering
coefficients for any multilayered sphere must reduce to
those for a multilayered sphere with a smaller number
of layers in suitable conditions. As an illustration, one
notes that a double-layered sphere (see Fig. 2) reduces
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to a homogeneous sphere under the following sets of
limits:

Homogeneous sphere with

Refractive
Limits Radius index

(i) mi=mg=mz=m rs m

(i) mi=mg=m, mg=1 ro m
(ili) mg=mg=1 r my
(iv) ry=re=r3=~R R my

W) ri=re=90 rs ma
i) ri1=0, ro=rz3=R R my

We have checked our expressions for N@% under the
aforementioned limits, and they do reduce to the Mie
coefficients. In cases (i)-(iv), we performed the check
initially by examining directly the determinant N34
under the limits. By cleverly shifting the columns
around and performing subtraction operation involving
columns, the original 6 X 6 determinant was shown to
reduce to a block diagonal form which was then ex-
pressed as a product of three 2 X 2 determinants, two
of which were always the Wronskians between the x and
the  functions, while the third corresponded to the
numerator of the Mie coefficient. In a similar way,
D@4 was shown to reduce to a block diagonal form.
The ratio N349/D®B4) then equaled the Mie coefficient

al? as expected. The manner in which the check for
cases (v) and (vi) was performed is illustrated easily by
considering the limiting case r;y — 0 in the case of a
single-layered sphere. For a single-layered case, the
numerator is (with mg = 1)

Ynlra) maln(moxs) max,(moxs) 0
Yolx2) Vnlmaxs)  xn(mexs) 0

NG@D =
0 mon{mex1) maxn(mexy) mydn(myx;)
0 Yalmaxy) Xn(maxy) Yalmixy)
lig N@3) = Yn(xo) monlmaxs)] |moxa(moxi) myPn(maxy) )
210 Vnlz2)  ¥nlmaxa) Xnlmoxy)  Ynlmoxy)

This reduction is made possible by the fact that lim,, o
Yn(moxy) — 0, limy o ¥, (mox;) — 0. Similarly,

{nlx2) mad,(moxs)

Galza)  Ynlmaxo)

moxn(max1) mydp(mix;)

D@ed) = , '
Xnlmaxy) Yalmixy)

The ratio N(23)/D(23) in the aforementioned limit then
equals a{®. Similar mathematical manipulations show

that the other coefficients in the foregoing example,
al® g8 g@h pGH pEI pG2 HEL 6D ete. ap-

proprlately reduce



lil. Alternative Forms for Scattering Amplitudes:
a(nr.r+1) and b(’:,r+1)

In connection with the computation of various cross
sections for the homogeneous and the single-layered
sphere, it has been noted in the past®® that inaccuracies
can arise if the scattering amplitudes are calculated
directly from the analytic expressions of the type given
in the preceding section. It has been further pointed
out that the use of logarithmic derivatives,? suitable
ratios, and products of Ricatti-Bessel functions®
smooths out such problems. In what follows, we for-
mulate a procedure for the caculation of scattering
amplitudes for the general case of a multilayered sphere
in a numerically stable manner. As we shall see, our
procedure involves logarithmic derivatives and only two
types of ratio of Ricatti-Bessel functions.

We proceed by first noting that a{""*" in Eq. (3) re-
mains unaltered if the functions x, and x, appearing
in the determinants N1 [see Eq. (4)] and D¢+
are replaced by the corresponding functions ¢, and {,.
Thus all the subsequent expressions are still valid pro-
vided, whenever X, appears, it is understood that {,
replaces it and similarly for the derivative of x,,. Not
to complicate matters unnecessarily, we will retain the
notation hitherto used for the determinants. With the
above changes incorporated, we now rewrite N +17+2)
as

NE+Lr+2) = Yn(Mrr ot DOWn (M 13,41 o (M1 )W¥0n (M x)
X Galmrxr—1) . .. Sa(mox)¥n(maxy)
X N%+1,r+2)’ (17)

where N§*17+% is a reduced (2r + 2 X 2r + 2) determi-
nant, obtained from the N{+1.r+2 determinant by di-
viding each column of the latter by the corresponding
factor in front of N§**2_ For example, the first col-
umn of N§*17*2 = the first column of N"+17+2 divided
by ¥ (m,4+9x,41), and so on. Likewise, we reexpress ny,
given in Eq. (8a), as

ng =An(Mre2Xre W My 12041)
X (Mo (mes1xre ) /¥n (M 12,410
= Mre¥nlmrsstre 1)/ ¥n (Mrroxre )] (18a)

Furthermore,

Ng,r+1) = §n(mr+1xr)\l/n(mrxr)g-n(mrxr—l)ll/n(mr—lxr‘l)

e g‘n(m2x1)\bn(m1xl)ﬁ(rz’§+”, (18b)

where NU3+Y is a reduced (2r X 2r) determinant related
to N&r*1 in the same manner as N1+ to NO+17+2)
in Eq. (17). Similarly,

an(mr+1xr+1) Cnlmes1Xrer)
g‘n(mr+1xr+1) (n(mr+1xr)
Tnlmrsixesy) Yalmesanran)]

. 18
fn(mr+1xr) \l/n(m,+2x,ﬂ)j (18<)

Ay = \l/n(mr+2xr+1)§-n(mr+lxr) M2

—Mr+l

Also

NETD = (my 1, W (mex ) G mexe—1) o2 Salmoaxy)
X Yo (myx)NGETY

= wn(mr+1xr+l)\[/n(mrxr)§—n(mrxrvl) oG Umgxy)

\[/n(mr+1xr) l
X ) Ni,’;'”'”,
prlmis Lbn(mmx,ﬂ) R (18d)
Substitution of Egs. (17)-(18d) into Eq. (8) yields
NS{+1"+2) = nHRNE,rl‘;EH)
Sk-n(mr+1x,.+1) ‘r//n(mr+1x,)
- Ay pNrHDl
Cnmps1%e) Ynlmpsytpny) R mE (19)
where
NHR = Mrio Yulmrs1xre1) — ey Yolmesox,iy) 7 (20m)
¢"(m’+1xr+1) \,l«'n(mr+2x,—+1)
g g‘;(mr+1xr+l) ¢;(mr+2xr+l>
RHR = Mr —m, ‘ ) -
" $nlmrs1xrs1) ! Ynlmreox,a) (200)

Writing

Dir+ir+2) = (n(mr+2xr+1)‘l/n(mr+1xr+1)
X Galmesrx) oo Galmox )n (mix )DE VY, (21)

-»

one obtains

aﬁ'+1,r+2) = NU+1Lr+2) /D (r+1,r+2)

- \l/n(mr+2xr+1)

g‘n(mr+2xr+l)

Equation (19) in conjunction with Egs. (20a) and (20b)

is the starting point for building up analytic expressions

for N§+1"+2 [and also for DE+1"+?]. One begins with

the case r = 1 corresponding to a homogeneous sphere,
for which one has

N%+1;+2)/D%+I,r+2). (22)

\ Vo(mixy) Ynlmoxy)
Yalmix)  Ynlmoxy)

Because of the involvement of Egs. (19)-(20b), the final
analytic expression consists of logarithmic derivatives
of the Ricatti-Bessel functions ¥, and {,, and ratios of
the type shown in Eq. (19). It is the particular forms.
of these ratios which motivated the factorizations given
in Eqs. (17)-(18d). For these forms, the ratios have the
useful property of boundedness which is discussed
below. Appropriate recursion relations determine these
ratios as well as the logarithmic derivatives. For ex-
ample, the logarithmic derivatives of the ¢, function,
represented below by A,(z) = ¥, (z)/¥,(2), are calcu-
lated by the downward recurrencel:

NP =nyp=m - (23)

An_1(2) = n/z — 1/[Ap(z) + n/z] (24)
with
An(z) = 0.0 + {0-0, N > nmax, (24a)

where ngax is the cutoff in the series expansion of the
cross sections defined in Egs. (2a)-{2¢). The loga-
rithmic derivative of the {, function, denoted by F,,(z),
is calculated by the upward recurrence!*%;

Fo(z) = —n/z + 1/[n/z — Fr_1(2)}, (25)
with

F,(z) = —i. (25a)
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The ratios of the type ¥, (m;x;) /¥, (mixj+1) are calcu-
lated in the following manner®
Ynlmixj) _ Yn-rlmix)) (X_;) [mitj+14,(mixjer) + 0
Vn{mixje)  Yn-1(mixjze) [mixjAn(mix;) + n]

Xi+1
(26)
with the starting ratio
Yolmix;)
Yolmixje1)
being bounded since x; < x4 and the imaginary part
of m; is always negative. If m;x; = ay— ibyand m;x;j+1

= @9 — by, the ratio can be expressed as
Yolmix;) _ eXD(l:al) - exp(-%al) exp(=2b1) exp(bs - ba),
Yolmixje1) expliag) — exp(—ias) exp(—2b2)

(27)

which is bounded as by < bs. One sees directly from the
expansion for ¥, (z) that the ratio ¥, (m;x;)/Yn(mix;+1)
in Eq. (19) approaches zero as (xj/x;41)" whenn — =.
Similarly, we find that the ratios of the type
$nf{mixjv 1)/ (mix;) encountered in the evaluation of
the scattering amplitudes can be calculated as fol-
lows:

Calmixjvs) _ Sa—rlmix;vi) (x_,) [r = xjr1Fno1(mixj+1)]
$nlmix;) Camtlmixy) \gjedd | 1= 2Fai(mix) |

This relation is derived using the recursion relation
Galz) = (n/2){n-1(2) = $Hoaf2). (29)

If mix;41 = as — tbo and m;x; = ay — iby,
j J

- (28)

$olmixje )/ $o(mixj) = exp[—i(az — a1)] expl(by — b2)], (30)

which is bounded since by > b;. One also notes that, as
n — o, the ratio on the left-hand side of Eq. (28) must
go to zero as (x;/xj+1)™

We wish to remark here that the finiteness of the
logarithmic derivative of {,(z) for z = 0 as well as the
bounded nature of the ratio in Eq. (28) prompted us to
recast the analytic expressions in terms of the ¥, and
the {, functions as explained earlier in the second
paragraph of this section. As before, the denominator
DEY+2) in Eq. (22) (corresponding to r layers and a
core) is obtained from the numerator N§*"+2? by the
replacement of ¥, (m,+9x,+1) and its derivative in the
latter with ¢, (m,+2%,+1) and its derivative. Moreover,
if the positions of m,19 and m,+; are interchanged in
Eqgs. (20a) and (20b), the same procedure yields
N+Lr+2) apd D+1+2) for the scattering amplitude
b ’(1r+ 1r+ 2)_

Below we give expressions for N§t1 for a few values
of r:

i r=1

N§2 =G, (mg=1); (31a)
Gi) r=2
NE® = G366 — $,@.G7G1  (ma=1); (31b)
Gy r=a
NEY = G3(G5Gs — SaQnGsG1) ~ RnPrGa(G2Gs — Sp@nG1G1)
(me=1). (31c)
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where
G1 = maAn(z1) — miAn(z9),

Gz = m3dn(zs) —
Ge = madn(zy) —

G7=m3Fp(z3) — maAn(24),

mZAn (24),
miFn{za),

Gy = myAn(25) = msAn(ze), (31d)

Gs = m3An(z3) ~ moFr(z4),

Gg = msFn(z3) — maFn(z4),

Gy =maFn(zs) — maAn(ze),

21 = MXy, 22 = MoXy, 23 = MaXy,

24 = MaXy, 25= mgXs, 2= MaXs, (31e)
An(z)) = ¥ (2)nz), Folz) = {(zi)/ a2, (31f)

Sp = $al23)/$alz2), Rp = {nlzs)/ $nlza), (31g)

Qn = ¥n(22)/¥nlz3), Pn =¥n(zd/¥n(zs). (31h)

Note that the form for a®® [and similarly b2%] we
obtain by using Eq. (31b) is different from that em-
ployed by Toon and Ackerman® in their calculation for
a single-layered sphere. They do not utilize explicitly
the ratio S, given in Eq. (31g), although the ratios @,
[Eq. (31h)] and the logarithmic derivatives are used.
Presence of ratios such as S,, [see Eq. (28)] is a charac-
teristic of our analytic expressions for the scattering
amplitudes in general. It may also be mentioned that
ratios such as S, and €,, and similarly R,, and P, [see
Egs. (31b) and (31c¢)] come as products. When n is
large compared to the size parameters in questions, such
products approach zero rapidly. For example, the
product S, @, in Eq. (31b) behaves as (x1/x9)2"*1 when
n > x9. This has the consequence that for such large
values of n, a(2%, %wen by Eq. (31b) and with S, @, =~
0, reduces to a*® corresponding to a homogeneous
sphere with parameters mo,x5. Inthe event that x; «
x 9 (tiny core), the product S,Q, ~ (x{)2**+1 forn > x4
(a less stringent condition than before), and the am-
phtude a2¥ in this case also would be essentially given
by a,, correspondlng to the parameters mg,xs. Any-
way, in the limit x; — 0, it is clear that the single-layered
sphere of Eq. (31b) reduces to the foregoing homoge-
neous sphere. The same arguments apply to the am-
plitude 63?. A similar analysis applied to the dou-
ble-layered sphere [Eq. (31c)] yields expressions for a
single-layered sphere and a homogeneous sphere under
appropriate limits.

Although this section has focused on the alternative
forms for the scattering amplitudes, similar forms for
the remaining scattering coefficients, Eqs. (13) and (14),
can also be given.

Before we conclude, we wish to add a note of caution.
The calculational procedure can fail if one of the loga-
rithmic derivatives or the ratios involving the ¥, func-
tion becomes very large. This will occur whenever the
argument of the ¥, function is real and very near a zero
of the ¥, function. In addition, since the ratio involving
the ¥, functions is derived from the starting ratio ¥,
(mixj)/¥o(mixj+1) [see Eq. (26)], it will blow up when-



ever ¥, (m;x;y 1) = sin(m;x; 1) = 0, i.e.,, whenever m;x;4,
= mw, where m is an integer. Thus whenever one of the
above undesirable conditions is obeyed, extra checks
must be performed to ensure the numerical stability of
the calculational procedure.

IV. Conclusion

We have provided a complete set of scattering coef-
ficients for a multilayered sphere. The set includes
coefficients needed to describe the fields within the
various regions of the sphere. The analytic expressions
are derived directly from the Mie coefficients using a
prescription which relates the coefficients for an r-
layered sphere to those for an (r — 1)-layered sphere.
This procedure has the advantage that the handling of
cumbersome determinants [(2r X 2r) when the number
of layers is r — 1], which normally occur in the expres-
sions, is circumvented. We have further recast the
analytic expressions for the scattering amplitudes into
a form which we believe should yield numerically stable
and accurate results. We have applied this calcula-
tional procedure to the calculation of scattering by a
double-layered sphere without any problems.11% Itis
worth remarking again that, based on our calculational
procedure, a computer program for the scattering of a
sphere with an arbitrary number of layers is not in-
conceivable.

The author is grateful to D. L. Mott for providing
some of his numerical results on the single-layered case
for comparison purposes during the development of the
computer program for the double-layered case. He also
thanks P. Chylek for his comments.
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