
On Congestion Problems in Digital Cross-Connect (DCS) Transport Networks

Ramesh Bhandari
AT&T Laboratories

Room 3F-208, 307 Middletown-Lincroft Road
Lincroft, New Jersey 07738, USA

(732) 576-5858
Fax: (732) 5766075
rbhandari@att.com

Abstract
In today’s environment where trafJic  demands within a
network are increasing rapidly, planning and designing
a network are assuming great importance. Rapidly rising
traffic within the network is leading to network
congestion, requiring solutions to cope with the
increasing demand. In this paper, we address the
question of network planning and design, focusing in
particular on alleviation of congestion at digital-cross
connect systems (DCS’s)  located at the nodes of a
broadband transport network. We describe a constrained
routing mechanism as part of a new design strategy,
employing unique dynamically changing routing
constraints. Also critical in network design and planning
is the knowledge of DCS capacity lost to tie-trunks, when
the requirement for DCS at a given node exceeds unity,
and the DCS’s need to De tied together to facilitate
proper cross-connects. Therefore, this paper also
provides a tie-trunk analysis, leading to mathematical
expressions, which can act as useful guides in the
judicious planning of DCS’s at the nodes of the given
network.

1. Introduction

As services are increasing to exploit the large
bandwidth offered by fiber, traffic on the broadband
transport network is growing rapidly. Thus,
incorporating current and expected high future growths
in planning and designing of telecommunication
networks is receiving attention more than ever before. In
today’s predominantly mesh-type networks where nodes
are connected by fiber cables, traffic is transported from
one node to another via a sequence of nodes. At each
node, a digital cross-connect (DCS) system resides where
the traffic destined for that node terminates, and the
transit traffic arriving on one fiber is cross-connected to

another fiber, depending upon its destination (see Figure
1).
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Figure 1 Traffic being cross-connected and
terminated at a digital cross-connect system
(DCS).

The traffic on a fiber is converted into an electric
form and demultiplexed into subunits, e.g., a 2.5 Gbps
optical signal on a given fiber may be converted and
demultiplexed into 50 electric STSl signals, and so on
[l]. Each such subunit of traffic, whether terminating or
transiting a node, utilizes two ports of a DCS - one for
entering the DCS and the other for leaving the DCS
system. As traffic grows and more fibers in the transport
network are opened up to bring the traffic into a node, a
resident DCS will experience the exhaustion of its port
capacity, leading to the requirement of more than a
single DCS. Eventually, depending upon the traffic
pattern and the traffic growth rate in the network, several
DCS’s may be required at a given node to accommodate
the increasing traffic and the expected future growth as
part of an overall planning process. This type of a
requirement leads to congestion at nodes (or central
offices) of the networks.
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Clearly, as a given DCS at a node begins to
experience port exhaustion, any new traffic should be
routed around it. Figure 2 illustrates the concept of
alternate routing to avoid port exhaustion. Thus, a
problem that frequently arises is: given the current port
utilization at the nodes of the network, how should the
routing of transport trafic from one node to the other be
altered to avoid nodes with high port utilization?
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Figure 2 A pair of paths for the same source-
destination; the DCS’s are shown as squares
without the crosses for clarity purposes.

Clearly, the aim of any network design in situations
involving potential DCS’s congestion is to accommodate
the increasing traffic in a way that leads to equitable
utilization of the DCS’s in the network, thus preventing
congestion in the network. In this paper, we provide a
routing mechanism to design the network incrementally.
This routing mechanism is discussed in Section 2. It
invokes a suitable shortest path algorithm like the
Dijkstra  algorithm [2-31,  which uses not only the true
cost of the network links and nodes in the determination
of the optimal route for the new traffic, but also an extra
cost (penalty) assigned to the nodes. This extra penalty
assigned to a node depends upon the current state of DCS
port utilization at that node. While such constrained
routing has been discussed before in a general way [4],
the uniqueness of the method employed here is that the
penalty assigned is a dynamically-changing number
calculated from a special mathematical function that is
driven by the current state of DCS port utilization. This
method then permits studies of alleviation of DCS
congestion versus cost, since any alternate route used to
circumvent a congested DCS will most likely be more
expensive than the standard route based also on the
criterion of least (true) cost.

When the traffic at a node increases to the extent that
requirement for DCS’s at a node exceeds unity, the

DCS’s need to be connected to each other. As a result,
some fraction of the total DCS’s capacity is lost to tie
trunks (see Figure 3). This leads to an important problem

Figure 3 A tie-trunk connecting two DCS’s uses
up two ports.

in the design and planning of networks: given the trafSic
arriving at a node, what is the total number of DCS’s
required, taking into account the tie-trunks? In Figure 4,

cluster of n DCS’s

Figure 4 Traffic T entering and exiting a cluster
of n DCS’s.

we show T subunits of traffic arriving at a node where a
cluster of n DCS’s cross-connects them. Under the
assumption of a symmetric distribution of traffic within
the DCS’s cluster, we perform an analysis in Section 3,
and derive expressions for the number of DCS’s required,
given the total traffic at the node. The derived formulas
(not given before) have proved to be useful in our studies
of network planning and design, and can be useful guides
to network planners and designers.

2. Constrained routing to alleviate conges-
tion

Commonly, in the analysis and design of transport
networks, a length or cost is assigned to each link and
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node of the given network, and traffic is routed over the
least cost route found by a suitable shortest path
algorithm such as the Dijkstra algorithm [2-31.  But as
traffic increases at a given node, DCS port utilization
increases until a point is reached where it is judicious to
divert the traffic to other underutilized nodes (DCS’s)
within the network. Therefore, a mechanism needs to be
built in to automatically divert traffic from a node
experiencing high port utilization. This mechanism then
results in balancing of port utilization in the network. A
special constraint function assigned to a DCS (and
described in Section 2.1) facilitates this balancing of the
load or port utilization in the network.

Consider the network of Figure 5, where a DCS

F c
Figure 5 A network of nodes and links

resides at each node. It is convenient to split each node of
the network, as in Figure 6a, to facilitate the
implementation of the routing mechanism. In Figure 6a,
each link incident on node M is split into two oppositely
directed arcs of equal length, and the split nodes M and

Figure 6a Splitting of a given node M, and
assignment of weight W, to the connecting arc
MM’.

M’ connected by arc MM’ which is assigned a weight
WM. The outgoing arcs originate in the primed node M’,
while the incoming arcs terminate on the unprimed node
M. The length (or cost) WM assigned to the connecting
arc represents the cost WM of the node in the original
network. It is composed of the actual (e.g., dollar) cost
for using the node and the extra cost (penalty) w
calculated from a special DCS constraint function to be
described in Section 2.1. Figure 6b shows a node-split

network corresponding to a part of the network of Figure
5. Path CABD in the original network now corresponds
to path CC’AA’BB’DD’ in the node-split network. Note
that routing is always from an unprimed node to a
primed node, and the total number of nodes in a given
path (in the node-split network) is an even number, being
equal to the total number of ports utilized by a subunit of
traffic transported over the path. The cost of routing a
subunit of traffic along the path CABD in the original
network would be WC + lcA + WA + IAB + WE, + Zr,* + WD,
where 1 denotes the link cost and W the cost of using a
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Figure 6b A part of the network of Figure 5
shown with its node-split counterpart.

node; the node cost includes the extra cost (penalty) w.

2.1 Construction of the constraint function, w

Let C denote the capacity of a DCS, which is the
maximum number of ports available on the DCS.
Further, let T denote the arriving traffic. Then, the
number of ports utilized = 2T. Define the fraction x =
2T/C, where 0 I x I 1. Clearly, w, the extra cost
(penalty) to be assigned to a given node (or equivalently
to the arc connecting the split nodes in the node-split
network), should be a function of the fraction x, the
fractional port utilization. Further, with increasing x, the
function w(x) should increase in order to discourage
further passage of the traffic through the node. This
procedure of employing a constraint function then biases
routing of traffic through DCS’s with fewer unfilled
ports, i.e., with lower values of x. Consequently, the
traffic within the network will tend to spread evenly
among the DCS’s within the network. Clearly, the
weighting function w(x) should satisfy the conditions:
w(0) = 0 and w(1) = inf, where inf is a large number that
ensures complete blocking of routing through the given
DCS after 2T has reached the value C. If p denotes the
number of links and l,, the length of the longest link in
the given network, we may set inf equal to p times &,,,.
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A number of functional forms of w(x) can be
constructed that meet the above conditions. In our
construction of a meaningful and useful form, we were
guided by the fact that w(x) should be an increasing
function of x, starting from the value of 0 at x = 0 and
rising to inf at x=1. Further, we required that the
function to be constructed be bounded by a step-like
function: w(x) = 0 for 0 5 x c 1 and w(x) = inf at x = 1.
The step-like function corresponds to the scenario where
routing is completely independent of the current state of
port utilization (being determined solely by the network’s
link and (true) node costs), until the port utilization x
reaches its peak value of unity at which point the node is
assigned a large extra value equal to inf. We point out
two functional forms that we constructed and which meet
the above criteria. These are

wi(x) = inf (exp(x/b)  -l)/(exp(l/b) - 1) (0 < x I l), (1)

wZ(x) = inf 2/n arctan(bx/(l-x))  (0 I x I 1). (2)

Both the functions w1 and w2 satisfy the conditions: Wi =
0 at x = 0 and w1 = inf at x= 1, i = 1,2.  Parameter b
controls the shape of the functions shown in Figures 7a
and b. Further, in each case, as b approaches zero, the

Figure 7a The function w,(x) versus x for
b=lO.O  (upper curve), b=l.O (middle curve), and
b=O.l (lower curve).

function approaches the step-like function (w = 0 for 0 I
x < 1 and w = inf for x = 1). When b increases from zero,
the shape deviates from the step-like function, assuming
a linear form (= inf x) in the case of wi(x) as b tends to
infinity.

In the case of w2(x)  (Figure 7b),  the range of variation
of the curve is far greater than that observed in Figure
7a. In fact, the function w2(x)  is bounded by the step-like

function at b = 0 and another function which is also a
step-like function (equal to 0 at x=0 and equal to inf for 0
cxll)atb= infinity. As a result, we recommend the
use of the function, WZ(X) in network planning and
design analyses. While the curve corresponding to low
values of b are to be used in situations where the extra
cost penalty grows steadily with increasing port
utilization, the function corresponding to high values of b
(for example, the curve corresponding to b = 10 in Figure
7b) is to be used, for example, for a set of special nodes
in the network that need to be avoided, regardless of their
state of port utilization. In general, the parameter b
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Figure 7b The function w,(x) versus x for b=lO.O
(upper curve), b=l.O (middle curve), and b=O.l
(lower curve).

enables a network designer to control the variation of the
constraint function, and thus the network design.

Note that, when more than one DCS can be
accommodated at a network node, then C, the capacity of
a single DCS, should be replaced with the maximum
capacity available in a cluster of DCS’s. This maximum
capacity is determined in the next section.

3. Tie-trunk analysis for a DCS cluster

Let there be n DCS’s in a cluster (see Figure 4).
Because some fraction of the ports on a DCS are
consumed simply in tying the DCS’s together (see Figure
3), the total available capacity for cross-connecting
and/or terminating traffic at a node is less than nC,
where C is the capacity of a single DCS. Figure 3 shows
two subunits of traffic arriving at a node, one being
cross-connected to a fiber via one DCS and the other via
two DCS’s tied together. The number of ports consumed
in the latter case is clearly four, two more than in the
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former, on account of a tie-trunk. In what follows, we
perform an analysis that takes into account tie-trunks.
The analysis yields formulas for finding the number of
DCS’s required, given the total traffic arriving at a node
as well as for finding the maximum allowable traffic
permitted at a node, given the number of DCS’s at a
node.

Since no DCS is to be preferred a priori, we make the
reasonable assumption that all DCS’s resident at a node
are equivalent, i.e., we treat the DCS’s in a cluster
equitably. An equal number of subunits of traffic are
input to each DCS in a cluster. If T is the total traffic

SINGLE DCS
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THREE DCS’s
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Figure 8 Traffic arrangement in a cluster of
DCS’s under the assumption of symmetry; T is
the total traffic at the cluster.

entering the cluster (see Figure 4), traffic entering each
DCS is T/n, where n is the number of DCS’s in the
cluster. Of the T/n traffic at a DCS, an equal amount is

cross-connected through it as well as the remaining
DCS’s via the tie-trunks. Refer to Figure 8, where we
have constructed topologies for symmetric distribution of
traffic over a cluster of DCS under the above
assumptions. In particular, we show T subunits arriving
at a cluster of i) one DCS ii) two DCS’s iii) three DCS’s.

Single DCS

i) Number of input subunits = T
ii) Total number of ports utilized = input subunits +

output subunits = T + T =2T.

Two DCS’s

i)
ii)

iii)

Number of input subunits = T/2 + T/2 = T
Input subunits + Output subunits = T/2 + T/2 +
T/4 + T/4 + T/4 + T/4 = 2T
Total port utilization = input subunits +
output subunits + 2 (T/4 + T/4) (due to tie-trunks)
=2T+T=3T.

iv) Number of extra ports needed due to tie-trunks = T

Three DCS’s

i) Input subunits + output subunits = 2T, as before.
ii) Total port utilization = (2T/3  + 2T/3 + 2T/3)  +

(4T/9  + 4T/9 +4T/9) (due to tie-trunks)
= 2T + 4T/3  = lOT/3

iii) Extra ports needed due to tie-trunks = 4T/3

3.1 Formulas for n DCS’s in a cluster

The analysis of the DCS’s arrangements for the
cluster of two and three DCS’s in Figure 8 leads to the
arrangement for n (> 1) DCS’s depicted in Figure 9.

Because of the symmetry, T/n subunits enter each
DCS, of which a fraction l/n is cross-connected at the
DCS where the traffic first arrives and the same fraction
cross-connected through each of the remaining n - 1
DCS’s via tie-trunks. In other words, T/(n2)  subunits
from each DCS’s in the cluster exit to enter a
neighboring DCS.

Referring to Figure 9, we see that, between each pair
of DCS’s, 2(T/n2 + T/n2)  = 4T/n2 ports are utilized in tie-
trunking. Since there are n(n - 1)/2 pairs of DCS’s in the
cluster, the total number N, of ports consumed by tie-
trunks = 4T/(n2)  times n(n-1)/2,  i.e.,

N, = 2T (n - 1)/n. (3)
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Figure 9 A cluster of n DCS’s connected
together; T is the total traffic at the cluster.

Adding the 2T ports for the T subunits entering and
exiting the cluster, the total number Nd of ports utilized
by n DCS’s to cross-connect T subunits of traffic is 2T +
2T (n-1)/n = 2T (2n- 1)/n,  or,

Nd = 2T (2n - 1)/n. (4)

The single, double and triple DCS cases (Figure 8)
discussed earlier are verified by the above formula. The
fraction N,/Nd = (n-1)/(2n-1)  approaches Yz as n becomes
large, i.e, 50% of the DCS capacity is used up by tie-
trunks when n is large.

To find the minimum number of DCS’s needed to
cross-connect the T subunits entering a node, we set Nd =
nC, where C is the capacity of a single DCS and n > 1,
i.e.,

nC = 2T(2n  - 1)/n (5)

Eq. (5) is quadratic in n; its solution yields as the root:

n’ = 2T/C(l + sqrt(1  - C/(2T)). (6)

Since the minimum number nmin  of DCS’s required is an
integer, we obtain

nmin = 1 + int{2T/C(l + sqrt(1  - C/(2T))}, (7)

where hit is an operator yielding the largest integer
smaller than or equal to its argument. Figure 10 shows a
plot of n,,,, versus T, assuming C = 1728. To depict the
effect of tie-trunks, we also show the plot without taking
into account the tie-trunk analysis. Without incorporating
tie-trunks, nmin would be 1 + int(2TK).  From Eq. (7>,
one sees that, as T becomes large, nmin approaches
int{4T/C},  which is twice as large as when the tie-trunks
are absent. Again, as before, the tie-trunks consume half

of the total DCS capacity available as the number of
DCS’s becomes large.

When the number  of DCS’s required at a node (or
central office) increases with increasing traffic T,
congestion also sets in. As a result, frequently in the
network design process, the maximum number of DCS’s
permissible at a central office (or node) is specified. The
question raised then is: what is the maximum number of
T subunits permitted to arrive at a node, given the
number n of DCS’s? The answer is obtained from Eq. (5)
above, which leads to

Tma?. = n2 C/(2(2n-1)) (8)
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Figure 10 n,,,,” versus T, with the tie-trunks
(continuous lines) and without the tie-trunks
(dashed lines).

Clearly, as n becomes large, T, = nC/4. In the absence
of tie-trunks, T, = nC/2. Thus, the above equation
indicates, as before, that half of the DCS’s capacity is lost
to tie-trunks. Figure 11 shows the plot of T, versus n,
with and without the tie-trunks.

Further Remarks: Clearly, the maximum useful
capacity in a cluster of n DCS’s (after deducting for
consumption by tie-trunks) is C,,= 2 TmaX, where Tmax  is
given by Eq. (8). In constrained routing (Section 2.1),  if a
cluster of n DCS’s exists a node, the constraint function,
w(x) may be defined with respect to x= n/C,.
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Figure 11 T,,, versus n, with tie-trunks (lower
curve) and without tie-trunks (upper curve).

If the network planning process warrants passage of
more traffic than can be accommodated by the cluster of
maximum permissible DCS’s, i.e., T exceeds T, (Eq.
(8)),  then the network may be augmented by the
construction of express links. The express links are
specifically designed to bypass the congested node. For
example, in Figure 5, if node A were congested beyond
rectification by constrained routing, and a significant
amount of traffic was flowing between nodes G and C via
node A, then congestion at node A could be alleviated by
the construction of a new link GC connecting links G
and C directly. Such a link is called an express link.

4. Summary

We have addressed the problems of congestion
experienced by network planners and designers in digital
cross-connect (DCS) transport networks. Specifically, we
have suggested constrained routing using a dynamically-

changing penalty factor to contain congestion at nodes.
We have constructed and pointed out suitable constraint
functions that can be employed in a network design
process. These constraint functions are novel and have
the unique feature of changing automatically in
accordance with the dynamics of the network design.
Further, a built-in parameter enables a network
practitioner to control the behavior of the constraint
function and thus the network design. When the DCS
requirement exceeds one, the DCS’s need to be tied
together to facilitate the cross-connect process at a node .
Consequently, some DCS port capacity is lost to tie-
trunks. Knowledge of consumption of tie-trunks is crucial
in any accurate network design and long-term planning
process. We therefore derive expressions (not given
before) relating the number of DCS’s required with the
total traffic arriving at a node and vice versa (the
maximum traffic permissible, given the number of DCS’s
at a node).
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