
Optimal Diverse Routing in Telecommunication Fiber Networks
Ramesh Bhandari

AT&T Bell Laboratories
Crawfords Comer Road, Holmdel, NJ 07733, USA

(908) 949-0693

Abstract

Telecommunication fiber networks can be more
complicated than the traditional graph-theoretic networks
of nodes and links. This is due to practical and economic
considerations. In this paper, we consider two major types
of deviations from the traditional graph-theoretic network,
and provide an algorithm .for the shortest pair of
physically-disjoint paths between a given pair of nodes in
the network. Such disjoint paths can be used for
improving the reliability of the network, e.g., one path
may be used as a back up while the other is actually used
for transmission of data. Alternatively, the entire traffic
between the given pair of nodes in the network may be
divided equally over the two disjoint paths so that if a
node or link on one of the paths fails, not all of the traffic
is lost. Optimizing the length of disjoint paths helps in
reducing the amount offiber usage and network costs.

1. Introduction

With the advent of fiber anti its increasing deployment
in networks, the risk of losing large volumes of data due
to a span cut or node failure has increased dramatically.
One way to ensure continuity of service between a pair of
nodes in the network is via provisioning of two
physically-disjoint paths, i.e., two paths that are node-
disjoint as well span-disjoint. The term span refers to
physical link in the network, which normally is a buried
conduit carrying the communication fiber. When two such
paths are provided between a pair of nodes in the network,
data may be transmitted over one path with the second
acting as a backup; alternatively, the data may be
transmitted over the two paths with the better of the two
signals selected at the receiving end. In general,
robustness of a communication network is improved by
splitting and routing traffic between every pair of nodes
over the available disjoint paths, since a node or span
failure on one of the paths affects only 50% of the
traffic. Furthermore, assignment of spare capacity on the
alternate path to accomodate the affected traffic then leads
to a robust network design. Clearly, the use of optimal
physical-diversity algorithms to find diverse routes
ensures that the amount of fiber that needs to be laid
along the diverse routes is minimal. In diverse
provisioning of business services, optimality implies

reduced cost.
While algorithms for disjoint paths have been given in

the past [l-31, they apply only to networks described by
nodes and logical connections called links. Fig. 1 is an
example of such a network. Dashed lines are the links. A
link indicates that a connection exists between the pair of
nodes in question, but does not necessarily represent the
physical path between the connected nodes. Because of
practical and economic considerations, telecommunication
fiber networks may be so constructed that the physical
paths of individual links may overlap with each other. For
example, in Fig. 1, the fiber connecting nodes B and G
and the fiber connecting nodes B and C may pass through
the same conduit for part of their ways. Such possible
span-sharing by links complicates the network, and leads
to the requirement of new algorithms for determination of
physicall y-disjoint paths.

B
&--- -xG

, % / /'
\ ' /
\ ' //

x- --yF
E

Fig. 1 A network of nodes and links.

In this paper, we consider two common types of
deviations from the standard graph-theoretic network of
nodes and links, and provide an algorithm for the shortest
pair of physically-disjoint paths between a given pair of
nodes in the network. To our knowledge, such type of an
algorithm for real-life networks has not been given before.
Section 2 describes the considered network, and Section 3
constructs the algorithm. Section 4 considers additional
deviations from the standard graph-theoretic networks, and
the applicability of the developed algorithms to them.

2. Network description

We assume that the network is bidirectional, and is
described by nodes, links and spans. Links indicate
connections between nodes, while spans comprise the
actual physical network. In what follows, we indicate

1498
11 c.3.1

0743-166W94 $3.00 62 1994 IEEE

links by dashed lines and spans by continuous lines, and
consider the following configmtions:

1) The Standard Configuration

The connection between a pair of nodes is via a single
span, as shown in Fig. 2.

-X --------
A B

Fig. 2 Link AB which has a single span, AB.

2) Fork Configuration

Fig. 3(a)is an example of fork configuration. Nodes A
and B are connected physically via spans A 0 and OB,
point 0 being a junction, i.e., the fiber between nodes A
and B is carried within two contiguous conduits. The
connection or link between A and B is indicated by the
dashed line AB, In a similar way, nodes A and C are
physically connected via spans A 0 and OC, and this link
between A and C is indicated by the dashed line AC.
However, nodes B and C are not similarly connected, i.e.,
node C may only be reached from node B via traversal of
spans BO, OA, AO, and OC in the order given, or
alternatively by some other path (in the network) that
does not involve junction 0. In short, a link between
nodes B and C, similar to the ones between nodes A and
B, and nodes A and C, is missing in Fig. 3(a). Fig. 30)
is a generalization of Fig. 3(a) It is a fork

Fig.3(a) Fork configuration with two prongs
(also called Y configuration in the text), and
(b) fork configuration with n prongs

configuration with n prongs; the same constraints apply
to connections between any pair of nodes Bi and Bj, i#j, i
= 1,2,---n, and j=1,2,----n. Span A 0 is common to n
links, AB1, AB2, ----, AB,. Therefore, an accidental cut
of span A 0 results in the simultaneous loss of all these
links.

3) Express Link

In Fig. 4, links AB, BC, and CD (dashed lines) consist
of single spans (continuous line) AB, BC, and CD,
respectively. In addition, nodes A and D arc also connected

directly by a fiber that originates at node A and terminates
at node D, traversing spans AB, BC, and CD. This
connection or link is indicated by the dashed line AD, and
called an express link. The spans of an express link are
always the spans of the links it traverses. In Fig. 4, it
traverses 3 links. In general, an express link may span n
links, where n is an integer greatex than 1. Furthermore,
the individual links may consist of more than one span,
as in the fork configuration.

A

Fig. 4 Express link AD traversing three links,
AB, BC, and CD.

In what follows, we assume that the network under
consideration is made up of network configurations
depicted in Figs. 2, 3, and 4. Figs. 3 and 4 are
configurations where spans are shared by different links.
Fig. 5 is an example of a network that includes such
configurations. This network is identical to the network
of Fig. 1 at the link-level (dashed lines). There

B G

Flg.5 A network with three fork conflgura-
tions (junction points 0, Os, 0") and express
link BG (span compostion: BC, CO', OG).

are 3 fork configurations with junction points: 0, 0', 0 ,
and an express link, BG. traversing links BC and CG. The
problem is to find an optimal pair of physically-disjoint
paths between a given pair of nodes in a network such as
Fig. 5. Optimality refers to minimum total span miles
for the pair of paths.

Clearly, the available shortest pair of node-disjoint
paths (SPNP) algorithm [l-31 valid for a standard graph-
theoretic network (as in Fig. 1) cannot be applied to the
network of Fig. 5 at the span (physical) level, because the
junction nodes 0,O'. 0 are not true nodes; as discussed
above, while node 0 in Fig. 3 0) can be accessed from the
neighboring nodes, A, B 1, --- Bn, traffic routed to node 0

1499
11 c.3.2

from node Bi cannot be routed to node Bj U&), in the next
step. On the other hand, the network at the link level
(dashed lines) consists of true nodes, and the SPNP
algorithm is applicable at the link-level. The linlrs may
be weighted by the sum of the length of the spans
comprising the link. The SPNP algorithm when applied
at the link level in Fig. 5 then gives the shortest pair of
paths, each path in the pair define!d by a sequence of links.
Optimality is with respect to span mileage. However, the
paths, although nodedisjoint, are not necessarily span-
disjoint. For example, for nodes A and 2, the SPNP
algorithm may find the optimal pair of node-disjoint paths
to be ABGZ and ADCHZ, in which case spans A0 and
CO would be common to the two paths found. To avoid
such span commonness, a new algorithm is needed. In
the next section, we not only give an algorithm for
finding physically-disjoint paths (node as well as span-
disjoint), but also ensure that the pair of paths obtained is
shortest with respect to span mileage.

3. Algorithm for the shortest pair of
physically-disjoint pat hs

Below we develop the algorithm for the shortest pair
of physicallydisjoint paths for a given pair of nodes in a
practical network of the type depicted in Fig. 5. In fact,
the algorithm we provide for this network may be
considered from a graph-theoretic standpoint a solution of
a special case of the general problem, which appears to be
NP-complete [4]. In other words, the general problem,
which considers all types of span-sharing topologies,
cannot be solved in polynomial time. The special case we
are addressing, however, comprises span-sharing
topologies that appear to be common in
telecommunication fiber networks. As we shall see
below, this particular problem is solvable in polynomial
time.

Our strategy here is to perform network
transformations such that the SPNP algorithm (which is a
polynomial-time algorithm [l-31) can eventually be used
at the link-level, while preserving physical dkjointness in
the searched paths. Therefore, as a first step, we describe
the SPI" algorithm. The SPNP algorithm we give
below [3] is an improved version of the Suurballe
algorithm [1,2] in that it does not require a general
shortest path algorithm like that of Ford's [5,71 or,
alternatively a special canonic transformation in order to
facilitate the use of the popular Dijkstra algorithm [6,7].
Rather, the Dijkstra algorithm here is altered slightly to
circumvent the need for the usual canonic transformation.
This modified Dijhtra algorithm is given in Appendix A.

3.1 Shortest pair of node-disjoint paths
algorithm

Because the network under consideration is
bidirectional, each link is equivalent to two oppositely
directed arcs of equal length. For example, in Fig. 1, link

BC is equivalent to two arcs, BC and CB. the former
implying that node C can be reached from node B via link
BC, and the latter that node B can be reached from nodeC
via the same link.

An SPNP algorithm is essentially a shortest pair of
link-disjoint algorithm applied in a network which has
been suitably modified by splitting a certain subset of
nodes. It is the operation of nodesplitting that gives rise
to nodedisjoinmess in the pair of paths.Using the
standard node-splitting procedure [5,1,2], the algorithm for
the shortest pair of node-disjoint paths is a series of
following steps:
1. For the given pair of nodes under consideration, find
the shortest path using the algorithm given in Appendix
A. For illustration, refer to Fig. 6a.

H

Fig. 6a Network of nodes and links;
shortest path is assumed to be ABCDZ wfth A
and Z, the starting and terminating nodes,
respectively in the shortest path algorithm.

2. Replace each link on the shortest path by an arc
directed towards the originating node (see Fig. 6b). Make
the length of the arcs negative.

- F K - - x t

\ Q \
/ \ \ \

Fig. 6b Network with shortest path edges
replaced wlth negative arcs dlrected towards
the startlng node, A.

3. Split each node on the shortest path (except the end
point nodes) into two colocated subnodes. joined by an arc
of length zero and directed towards the starting node.
Replace external links connected to nodes on the shortest
path by two arcs of the same and original length, and
connected to the two subnodes as shown in Fig. 6c.

11 c.3.3
1500

4. Run the shortest path algorithm (Appendix A) again. .
c

F I-

H
Y

Fig. 6c Network modified by node-splitting.

5. Remove the zero length arcs; coalesce the subnodes
into their parent nodes. Replace the single arcs of the
shortest path with their original links (of positive length).
Remove overlapping arcs of the two paths found to obtain
the shortest pair of paths.

Step 2 above permits interlacing of the second path
(found in Step 4) with the first; e.g., if the second path
determined in Step 4 is AEFD'CHIZ (see Fig. 6c). it is
said to interlace with the part CD of the first path found
in Step 1 (see Fig. 6a); the pair of vertex-disjoint paths
obtained in this case would be (AEFDZABCHIZ).

We now consider a network interspersed with express
links and fork configurations, as in Fig. 5. We first
focus on the express links.

3.2 Express Links

Assumption 1 The span content of an express link is
exactly the same as the sum of the span contents of the
individual links comprising the express link.

We now define the following network

Network 2 This network is the same as the original
network, except that express links are removed.

For example, in such type of a network, express link
BG in Fig. 5 would be absent.

Theorem 1 An optimal pair of physically-disjoint pair
of paths in Network 2 is also an optimalpair of
physically-disjoint paths in the original network,
optimality being with respect to span mileage.

Proof: Suppose physically-disjoint paths exist between
a given pair of end points (A and 2) in Network 2.
Consider the optimal pair, denoted by P2, in Network 2
(see Fig. 7a). By optimal pair is meant a pair of paths
that is shortest with respect to span mileage. In the
original network, this pair of paths has the same span
structure, i.e., it remains physically-disjoint with the

Network 2
Optimal Pair P2

Qriainal Network

Pair P
0

.r/

Fig. 7a The optimal pair of physically-disjoint
paths, P2, in Network 2 shown by the arcs it
traverses; in the original network, it is shown
as pair Po.

Original Network
Alternate Pair 5,

Pair Po-

x -
>(

4

Fig. 7b Alternate pairs of physically-disjoint
paths, Po* and Po"; the latter is derived from
the former.

1 1 c.3.4
1501

same span mileage. We call this pair Po in the original
network. Now, the following important question arises: Is
the pair Po also an optimal pair of physically-disjoint
paths in the original network? In other words, is there
another physicallydisjoint pair of paths in the original
network that is shorter than the pair Po ? Let us suppose
the answer is yes. We show this alumate pair, denoted by
Po*, in Fig. 7b. Since express links are present in the
original network, express link traversal is always a
possibility. As a result, Fig. 7b depicts the paths
traversing such links. Because of Assumption 1, traversal
of the paths over express links can be replaced with
traversals over the component links without changing the
span mileage. Thus, this pair, denoted by Po" in Fig. 7b,
is also an optimal pair in the original network. Clearly,
this optimal pair Pow is also a solution in Network 2. We
denote this pair of paths in Network 2 by Pz. Now we
invoke the following general theorem:

Theorem 2 An optimal solution in a given network, if
also a solution in a less flexible network, must
necessarily be an optimal solution in the less flexible
network.

Thus, the pair of paths Po** in Fig. 7b, which is an
optimal physicallydisjoint pair of paths in the original
network, is also an optimal pair of physically-disjoint
paths in Network 2 (less flexible due to the absence of
express links). But this pair Pz is different (and shorter)
than pair P2 initially assumed to be optimal in Network
2. The contradiction implies that the alternate pair Po*
considered in the original network and shown in Fig. 7b,
cannot be shorter than the 'pair Po (see Fig. 7a).
Therefore, Po is indeed an optimal pair in the original
network. This proves Theorem 1.

Thus, the problem of finding an optimal physically-
disjoint pair of paths in the original network reduces to
the problem of finding such a pair in Network 2, where
express links are absent. Once such a pair is found in
Network 2, the links present on the paths can be pieced
together, whenever possible, to form express links that
exist in the original network. The ensuing paths represent
the desired pair of paths in the original network. Note that
the step of piecing together the links to form express
links, although not necessary, is desirable, since it reduces
the total number of hops, and thus the dollar cost of
provisioning the physically disjoint circuits.

3.3 Fork Configuration

The network to be considered is Network 2, which is
made up of the standard links (Fig. 2) and links
corresponding to the fork configuration (Fig. 3), with
express links absent.

Assumptions:

1) The fork configuration consists of two prongs (this
assumption is only for the sake of simplicity in
discussion). See Fig. 3a We call this configuration they

Flg. 8a Two adjacent Y conflguratlons glvlng
rlse to multiple links between B and C

. .B

\

XE

Fig. 8b Introduction of dummy node B' results
In the disappearance of multiple links; link BC
via Junction 0' Is dlvlded Into two links , B'B
and B'C.

configuration (as we shall see, the results for the Y
configuration also hold for the fork configuration with
more than 2 prongs).

2) There are no multiple links. If they do occur as in
Fig. 8a, they can be eliminated by introducing a dummy
node of degree 2 (see Fig. 8b). Degree of a node is the
number of neighbors of the node. Dividing a given link
into two links (as in Fig. 8b) via introduction of a
dummy node of degree 2 does not affect routing in the
network.

Lemma 1 Constraint of node-disjoinmess at the link-
level ensures absence of span-sharing in the region of the
network away from the common end points of the two
paths.

Fig. 9 shows two paths encountering a Y
configmtion..The three different orientations of the Y
Configuration are considered [8]. In each of these cases, the
constraint of node-disjointness at the link-level ensures
that span OD common to links CD and BD is not
traversed by both the paths simultaneously. The reason is
that sharing of span OD requires each path to meet at node

11 c.3.5
1502

D. Since the constraint of node disjoinmess

/

/ / 1 (YI Orientation)

D

-c '\
\

'\

Fig. 9 Paths I and II encounter a Y
configuration in a different orientation in each
one of the above figures.

prevents the two paths to have a common node, the two
paths cannot meet at node D; hence, sharing of span OD
cannot occur.

At the end points, A and Z, between which a pair of
physically-disjoint paths is sought, two cases arise:

1. No Y configuration is present.
2. Y configuration at end point A and/or Z is present.

3.3.1. No Y configuration at the end points
We have already noted above that the constraint of node-
disjointness ensures absence of span sharing away from
the end points. If, in addition, Y configurations do not
occur at the. end points, an application of the SPNP
algorithm at the link-level will guarantee a shortest
physically-disjoint (node as well as span-disjoint) pair of
paths.

3.3.2 Y configuration at the end points When
Y configurations occur at the end points, they occur in
two orientations. These orientations, denoted by Y 1 and
Y2, are displayed in Fig. 10.

A *
C

B .
>b
, ,F (~ 2 Orientation)

k - % *

D

Fig. 10 Two orientations, Y1 and Y2, of the

Y 1 Orientation Constraint of node-disjointness (at
the link-level) ensures absence of span-sharing at node A;
for example, if one path leaves node A via link AB, the
other path necessarily leaves node A via link AD, and
span OB is never common to the two paths originating
from node A. Thus, the SPNP algorithm suffices.

Y2 Orientation In this case, node-disjointness at
the link level does not guarantee span diversity. For
example, the two paths found by the SPNP algorithm
may traverse links AB and AC in which case span A 0
will be common to both the paths. Thus, the SPNP
algorithm fails, and a new algorithm is needed.

Y configuration at the end point A

Construction of a New Algorithm :

Consider the most general case where Y
configurations occur at both the end points (A and
2). The shortest path between A and Z falls into one of
three categories:

1. It does not pass through the Y configurations
present at the end points.

2. It passes through a Y configuration at one of the
end points.

3. It passes through a Y configuration at each end
point.

Case I

In this case, a second path (node-disjoint from the first)
will not share any spans with the first path. Thus, the
SPNP algorithm, when applied, yields an optimal pair of
paths that is not only node-disjoint but also span-
disjoint.

11 c.3.6
1503

case 2

Since the second path node-disjoint from the first can
share a span (the stem of Y configuration), we need to
modify the existing algorithm. In what follows, we first
consider some network transformations.

Network 3 In Network 2, replace the end point Y
configuration (through which the shortest path passes)
with a new Y configurationin which the stem of the Y
configuration is of length 0, and the prongs of length
equal to their respective parent li& (see Fig. I I) .

Because this construction leaves the Y configuration
link lengths unchanged, the network at the link level
remains unchanged..Thus, the shortest path (in the
network of links) remains invariant under this
transformation (see Fig. 11). In other words, the shortest
path in Network 3 will pass through the same link of the
Y configuration, and the same component spans (of
different individual, but same total length) are traversed.
Furthermore, because the basic topology of the new Y
configuration replacing the original Y configuration
remains unchanged, Networks 2 and 3 are equivalent,
validating the following lemma:

Lemma 2 An optimal physically-disjoint pair of paths
in Network 3 is also an optimal physically-disjoint pair
of paths in Network 2.

We now define another network transformation.

Network 4 In Network 3, replace the span no& of the
new Y configuration through which the shortest path
passes) with a network node so that spans of the Y
configuration become links of the network (see Fig. 11).

We observe that Network 4 behaves like a traditional
network in the application of the SPNP algorithm for the
given end points, A and Z. The SPNP algorithm when
applied between the given end points produces the shortest
node-disjoint pair of paths with no span overlap. We now
state and prove the following theorem:

Theorem 3 An optimal pair of node-disjoint paths in
Network 4 transforms to an optimal pair of physically-
disjoint paths in Network 2.

Proof: We fvst show that the shortest path between A
and Z in Network 3 remain invariant in Network 4.

An extra node in Network 4 makes the network less
constrained (or more flexible) compared to Network 3, and
leads to the possibility of the shortest path (between the
end points, A and Z) in Network 4 being shorter than the
shortest path between the same end points in Network 3.
Let us assume that the shortest path found in Network 2
passes through node B, as shown in Fig. 11. As discussed
earlier, this path will also be the shortest path in Network

3. Denoting it by SPO, it may be reexpressed as SPO =
A 0 + OB + shortest path from B to Z.

Shortest Path SPO
between A and Z

Network 2 J

A

r

Network 3 Path SPO +

Network 4
Path SPO between
A and Z

Fig. 11 Network transformations applied to
Network 2 yield Network 3 and Network 4

Suppose the shortest path in Network 4 is indeed
shorter than path SPO. Two possibilities arise for the new
shorter path (see Fig. 12). It exits from

i) node C via path P, node B and node 0 (denote this
shortest path by SP1).

ii) node B via path Q, node C and node 0 (denote this
shortest path by SP2).

Case i)

SP1 = Path P + BO + OC + shortest path from C to
Z=Path P +BO+ (A0 +OC+shortest path from C to Z)
(since A M) = Path P + BO + an alternate path between

1504
11 c.3.7

Path P from A to B

/- //

New Shortest
A Path SP1

A
Path SP2

Path Q from A to C

Fig. 12 Two new possible shortest paths, SP1
and SP2, in Network 4

A and 2 in Network 32SPO. since Path P2 0, B020, and
any alternate path in Network 32 SPO. This result is a
contradiction, implying case i) is invalid.

Case ii)

SP2 = Path Q + CO + OB + shortest path from B to2 =
Path Q + CO + (A 0 + OB + shortest path from B to Z)
(sinceAO=O)= Path Q+ CO + SPO 2 SPO, since Path Q2
0 and CO2O. This result is a contradiction, ruling out
case ii) also.

Since cases i and ii are both invalid, the shortest path
in Network 4 cannot be shorter than the shortest path in
Network 3. In other words, a shortest path determined in
Network 3 will also be shortest in Network 4.

Because the shortest path (path SPO) in Network 4
passes through links A 0 and OB at end point A, and a
non Y configuration at the other end (assumption in Case
2, which is presently being addressed), Network 4 behaves
like a traditional network in the application of the SPNP
algorithm between the given end points. In other words,
application of SPNF’ algorithm, in conjunction with the
shortest path found in Network 3, will result in the
shortest pair of physically-disjoint paths in Network 4.
Because the SPNP algorithm involves the possibility of
interlacing of the second path with the first shortest path,
two classes of solutions exist for the pair, paths I and 11.
obtained via Step 5 of the SPNP algorithm (see Section
3.1). At end point A,

1) Path I traverses links A 0 and OB; path 11 traverses a

link other than A 0 (this is a case where no interlacing
takes place or if it takes place, the second path exits from
a node before node 0 (see Fig. 13)).

2) Path I traverses links A 0 and OC; path I1 traverses
a link other than A 0 (this is a case where the second path
interlaces with the shortest path and exits from node 0
(see Fig. 13)).

Second
L

I Path
Shortest Path
(A to Z)

.._.

Second Path
Sh rtest P
(A to Z)

.._ --._

x
z

th

x
A Z

Fig. 13. The second path interlacing with the
shortest path in Network 4 (which is the same
as the shortest path In Network 3), and exiting
from a node before node 0 in the upper figure,
and from node 0 in the lower figure.

The above solutions in Network 4 become solutions
in Network 3, since traversal of links A 0 and OB (or OC)
by path I above transforms to a traversal of link A B (or
AC) in Network 3. Thus, the optimal solutions obtained
by using the SPNP algorithm in Network 4 are valid
physically-disjoint solutions in Network 3. Invoking
Theorem 2, these physically-disjoint solutions in
Network 3 (less flexible compared to Network 4) are
optimal solutions also. This result in conjunction with
Lemma 2 proves Theorem 3.

Case 3

For the third case in which the shortest path passes
through Y configuration at each of the end points, A and
Z, the network transformation is performed at bolh the

11 c.3.8
1505

end points, i.e., the junction span nodes of the Y
configurations are converted to network vestices with the
stems of the Y configuration reduced to zero length, while
assigning link lengths to the individual prongs. Similar
proof can be given to show that optimal solutions given
by the SPNP algorithm in the transformed network are
also optimal physically-disjoint solutions in Network 2.

3.3.3 Algorithms for Y Configuration T h e
results of Sec. 3.2.1 and Sec. 3.2.2 can now be combined
into the following algorithm:

Algorithm 1 In a network containing Y configurations
(Network 2) . a shortest pair of physically-disjoint
paths between a given pair of nodes, A and Z, is obtained
from the following steps:

1. Find the shortest path from A to Z. .
2. Examine the end point spans of the shortest path
found. If an endpoint span is the stem of a Y
configuration, perform the following transformation:

Replace the junction span node of the Y
configuration by a node and alter the length of the
stem of the Y configuration to zero, while
increasing the length of the individual prongs to
the length of the individual links, as in Fig. 11.

3. Modify the network (at the link-level) as in the SPNP
algorithm (see Section 3.1).
4. Run the shortest path algorithm again (modified
Dijkstra given in Appendex A).
5. Erase overlapping parts and coalesce split nodes, as in
the SPNP algorithm, to obtain a shortest pair of node-
disjoint paths. The pair obtained is also span-disjoint.
6. Transform back to Network 2 by replacing any added
nodes in step 2 by span nodes and resetting the individual
span lengths of the Y configuration to original lengths.
The pair of paths obtained in Step 5 becomes an optimal
pair in Network 2.

AB blocked once, and with link AC blocked the second
time, and choose that result for the shortest pair for which
the value of the pair length is the lower of the two.
Similarly, traversal (by the first shortest path) of a Y2
configuration at the other end point, 2. would require two
runs of the SPNP algorithm, with one of the two span-
sharing links blocked in each run. When the shortest path
traverses Y2 configurations present at both the end points,
2x2 (4) runs of the SPNP algorithm would be required
(seeFig. 14).

Algorithm 2 This algorithm is an alternative to
Algorithm 1, and consists of the following steps:

1. Find the shortest path from A to Z.
2. Examine the end-point spans of the shortest path

3. Following cases arise:
If these spans are not shared spans, run the second

shortest path algorithm as in the SPNP algorithm
(Section 3.1); terminate.

The pair of paths obtained after erasure of any
overlapping parts will be the desired shortest pair
with node-disjointness as well as span-
disjointness.

If one of the end point spans is a shared span, run
the SPNP algorithm twice, with one of the two
span-sharing links blocked in one run, and the
other span-sharing link blocked in the other run; if
both the end points have shared spans, run the
SPNF’ algorithm 2 x 2 (4) times (see Fig. 14).

Select the pair of paths for which the total length
is the least.

Perform erasure of overlapping parts, as in the
SPNP algorithm.

Resulting paths form the shortest node, span-
disjoint pair between the given end points.

found.

An Alternative to Algorithm 1 An alternative
to Algorithm 1 can be derived from Fig. 13 and the
discussion pertaining to Fig. 12 in the derivation of
Algorithm 1. In Fig. 13, an exit of the second path from
a node before node 0 leads to a pair of paths in which
path I traverses link AB in Network 2, and path II any
link other than AB and AC. Clearly, this optimal
solution is also a solution in a network where link AC is
blocked. Since the latter is a constrained network, by
virtue of Theorem 2, this solution is an optimal solution
in the constrained network (link AC blocked). Similarly,
when the exit of the second path takes place from node 0,
we obtain a solution in which path I traverses link AC in
Network 2, and path I1 traverses a link which is neither
AB nor AC. By similar reasoning, this solution is an
optimal solution in a network constrained by the blocking
of link AB. Since it is not known a priori which of the
two cases (path I traversing link AB or AC) actually
occurs, one may run the SPNP algorithm twice, with link

Flg. 14 If the shortest path between A and Z
passes through shared spans at both ends,
run the SPNP algorlthm four times, blocking
the following pairs of links, one at a tlme:
(AB,XZ), (AB,YZ), (AC,XZ), and (AC,YZ)

Note that, in Algorithms 1 and 2, a tacit assumption is
that the links are weighted by the total length of the
component spans. Thus, the optimality is with respect to
span mileage. It is important to mention here that these
algorithms are general enough that weights corresponding
to a different physical quantity such as dollar cost for

1506 1 1 c.3.9

transmission over the link, etc., can also be assigned to
the links, in which case optimality is with respect to that
physical quantity.

3.3.4 Algorithms for the general fork
configuration Algorithms 1 and 2 specifically
developed for a network in which Y configurations are
present, extend easily to networks that contain fork
configurations with more than two prongs (see Fig. 3(b)).
Algorithm 1 is generalized to fork configurations with an
arbitrary number of prongs by replacing the expression, Y
configuration, with fork configuration everywhere in the
statements of the algorithm. In Algorithm 2, the SPNP
algorithm will have to be run as many times as n x m,
where n is the number of links which share the span at
one end point and m the number shared by the span at the
other end. Clearly, Algorithm 1, which requires only two
runs of the shortest path algorithm, is more efficient than
Algorithm 2 which may require the repeated use of the
SPNP algorithm.

3.4 Overall Algorithm

An algorithm for the overall fiber network obtains
upon combining the results of Section 3.2 and Section
3.3. Since results of Section 3.2 are valid for optimality
with respect to span mileage, the overall algorithm
performs optimization with respect to span miles. In
other words, the links are weighted by the total physical
length of the spans comprising the links.

Algorithm 3: When a network contains express links,
and fork configurations, the shortest pair of physically-
disjoint paths between a given pair of nodes is obtained
from the following steps:

configuration of Fig. 3(b), from an algorithmic
standpoint, it can be replaced with the standard fork

Fig. 15 Reduction to the fork configuration

configuration (see Fig. 15), provided the weights (or the
lengths) of the individual links are preserved. In other
words, the length of link AC (=AO+OC) in Fig. 15,
should be the same as the length of link AC
(=AO+O'O+OC), and the same holds true for the other
links AB and AD, provided the lengths are unchanged.

2. Node-to-Node Connections via Junctions: This
type of a configuration is illustrated in Fig. 16. It is not

/ '";.;7"

1. Remove the express links in the network.
2. Perform steps of Algorithm 1 or 2.
3. Piece together links on the two paths found to form

express links, if possible. These express links must
belong to the set of express links removed in Step 1.

Step 3 is optional. Its utility lies in the fact that it
reduces the total number of links in the two physically-
disjoint paths found by the algorithm. The total number
of span miles remains unaffected.

4. Application to Other Possible
Configurations

We enumerate other types of configurations to which
the developed algorithm can be applied:

1 . Multiple Fork Configurations: These are fork
configurations with more than one junction, and may
occur frequently in fiber networks. An example with two
junctions is depicted in Fig. 15. The traffic from node A
to node B is via spans A 0 and OB, while the traffic from
node A to node C (or D) traverses spans AO, O'O", 0°C
(or D). Although physically-different from the fork

Fig. 16 introduction of a dummy
reduces the configuration on the left
basic fork configurations.

node
to the

fundamentally different, since a judicious introduction of a
dummy node reduces it to a pair of fork configurations.

3. Triangle Configuration: Fig. 17 shows the
triangle configuration and its equivalent. Unlike the Y
configuration, which has a missing link, all the nodes in
the triangle configuration are connected by a pair of spans
via junction 0. This leads to the equivalence depicted in
Fig. 17.

a+b P . 9 O b

\ \ I \
a+c \\ " k

Fig. 17 Reduction of the triangle configuration

1 1 c.3.10
1507

5. Summary

In this paper, we have considered networks, which are
described by links (logical connections) and physical
connections called spans. Two different links may,
however, share the same span. We have considered
different types of span-sharing (including two main ones)
that may occur in actual telecommunication fiber
networks, and have provided an algorithm far the shortest
pair of physically-disjoint paths for a given pair of nodes.
We give two versions of the algorithm, with the more
efficient one requiring only two runs of an appropriate
shortest path algorithm. Disjoint-path algorithms are
useful in diverse provisioning of business services, and
when computationally fast can also be employed in real-
time diverse provisioning of seMces in a switched service
environment. Additionally. they can also be utilized in a
robust design of telecommunication networks based on
the concept of traffic flow over twodisjoint paths for
every pair of nodes in the network.

6. Acknowledgements

The problem originated in a project brought to the
author's attention by Clayton Lockhart, and the author
thanks him for his encouragement. Casimir Wienynski,
Hemando Garcia, Fung-Mei Chin, and Art OZeary wrote
the computer codes for the algorithms and their
simulation.

References

1. J.W. Suurballe, "Disjoint Paths in a Network, Networks,

2. J.W. Suurballe and R. E. Tarjan, "A Quick Method for
Finding Shortest Pairs of Disjoint Paths". Networks, 14

3. R. Bhandari, "Simpler Edge/Vertex-disjoint Shortest Pair
Algorithms ", to be published.
4. For general information on NP-complete algorithms, see
M.R. Carey and D.S. Johnson, Conlputers and Intractability
-A Guide to t k Tkory of NP-completeness, W.H. Freeman,
1979.
5. L.R. Ford and D. R. Fulkerson, Flows in Network,
Priiceton, University Press (1962).
6. E.W. Dijkstra, "A Note on Two Problems in Connexion
with Networks," Numer. Math. 1 (1959)269-27 1.
7. M. Gondran and M. Mhoux, Graphs and Algorithms,
John Wiley (1984).
8. Although the three possible orientations of a Y
configuration are displayed in Fig. 9, only two are
fundamentally different, the first and the second; the second
and the third configurations are basically the same.

Appendix A

4 (1974) 125-145.

(1984) 325-336.

Modified Dijkstra Algorithm for Shortest Path
from A to Z

The algorithm given below is a slight variant of the
original Dijkstm algorithm [6,7]. It is different (in Step 3

below) in that it scans all the neighbors of the node

Letd(i) denote the distanceof node i f" sraning node
A. Let P(i) denote its predecessor.

1. start with
d(A)=O, d(i)=l(Aj) ,if i E rA,
= 0, Otherwise
(r i =set of fmt neighbar nodes of node i, l(ij)=length of
81rc from node i tonode j).
P(i)=A V i E rA.

selected (or "pemanently 'I labeled) in step 2.

se$ S = rA.

2 . F i n d j ~ S
such that d(j)=min d(i), i E S .
Set S = S - (j).
If j = Z (the terminal node), END; otherwise, go to 3.

3. Vi E r j , if du)+l(i,i) c d(i), set d(i)=d(j)+l&i), P(i)=j
and s= s u (i) ;
go to 2.

The algorithm, after initialized in step 1, altemates
between steps 2 and 3. In each iteration, a node with least
pathlength is selected from the set: S The algorithm
searches by making one move at a time, and terminates
when the node selected fiom the sets is Z.

In the original Dijkstra algorithm, when a node with
the least path length is selected from the list of tentatively
labeled nodes, the selected node is said to have been
labeled "permanently", i.e. the shortest path length to that
selected node from the given origin (the starting node A)
has been found. No further scanning from any other node
in the network can update the label of this node. In our
application, because of the presence of negative arcs in the
modified network (see Fig. a), rescanning can update the
label of the previously selected (or "permanently" labeled)
node. The algorithm given above permits such
rescanning.

11 c.3.11
1508

