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Abstract 

Telecommunication fiber networks can be more 
complicated than the traditional graph-theoretic networks 
of nodes and links. This is due to practical and economic 
considerations. In this paper, we consider two major types 
of deviations from the traditional graph-theoretic network, 
and provide an algorithm .for the shortest pair of 
physically-disjoint paths between a given pair of nodes in 
the network. Such disjoint paths can be used for 
improving the reliability of the network, e.g., one path 
may be used as a back up while the other is actually used 
for transmission of data. Alternatively, the entire traffic 
between the given pair of nodes in the network may be 
divided equally over the two disjoint paths so that if a 
node or link on one of the paths fails, not all of the traffic 
is lost. Optimizing the length of disjoint paths helps in 
reducing the amount offiber usage and network costs. 

1. Introduction 

With the advent of fiber anti its increasing deployment 
in networks, the risk of losing large volumes of data due 
to a span cut or node failure has increased dramatically. 
One way to ensure continuity of service between a pair of 
nodes in the network is via provisioning of two 
physically-disjoint paths, i.e., two paths that are node- 
disjoint as well span-disjoint. The term span refers to 
physical link in the network, which normally is a buried 
conduit carrying the communication fiber. When two such 
paths are provided between a pair of nodes in the network, 
data may be transmitted over one path with the second 
acting as a backup; alternatively, the data may be 
transmitted over the two paths with the better of the two 
signals selected at the receiving end. In general, 
robustness of a communication network is improved by 
splitting and routing traffic between every pair of nodes 
over the available disjoint paths, since a node or span 
failure on one of the paths affects only 50% of the 
traffic. Furthermore, assignment of spare capacity on the 
alternate path to accomodate the affected traffic then leads 
to a robust network design. Clearly, the use of optimal 
physical-diversity algorithms to find diverse routes 
ensures that the amount of fiber that needs to be laid 
along the diverse routes is minimal. In diverse 
provisioning of business services, optimality implies 

reduced cost. 
While algorithms for disjoint paths have been given in 

the past [l-31, they apply only to networks described by 
nodes and logical connections called links. Fig. 1 is an 
example of such a network. Dashed lines are the links. A 
link indicates that a connection exists between the pair of 
nodes in question, but does not necessarily represent the 
physical path between the connected nodes. Because of 
practical and economic considerations, telecommunication 
fiber networks may be so constructed that the physical 
paths of individual links may overlap with each other. For 
example, in Fig. 1, the fiber connecting nodes B and G 
and the fiber connecting nodes B and C may pass through 
the same conduit for part of their ways. Such possible 
span-sharing by links complicates the network, and leads 
to the requirement of new algorithms for determination of 
physicall y-disjoint paths. 
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Fig. 1 A network of nodes and links. 

In this paper, we consider two common types of 
deviations from the standard graph-theoretic network of 
nodes and links, and provide an algorithm for the shortest 
pair of physically-disjoint paths between a given pair of 
nodes in the network. To our knowledge, such type of an 
algorithm for real-life networks has not been given before. 
Section 2 describes the considered network, and Section 3 
constructs the algorithm. Section 4 considers additional 
deviations from the standard graph-theoretic networks, and 
the applicability of the developed algorithms to them. 

2. Network description 

We assume that the network is bidirectional, and is 
described by nodes, links and spans. Links indicate 
connections between nodes, while spans comprise the 
actual physical network. In what follows, we indicate 
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links by dashed lines and spans by continuous lines, and 
consider the following configmtions: 

1) The Standard Configuration 

The connection between a pair of nodes is via a single 
span, as shown in Fig. 2. 

-X -------- 
A B 

Fig. 2 Link AB which has a single span, AB. 

2) Fork Configuration 

Fig. 3(a)is an example of fork configuration. Nodes A 
and B are connected physically via spans A 0  and OB, 
point 0 being a junction, i.e., the fiber between nodes A 
and B is carried within two contiguous conduits. The 
connection or link between A and B is indicated by the 
dashed line AB, In a similar way, nodes A and C are 
physically connected via spans A 0  and OC, and this link 
between A and C is indicated by the dashed line AC. 
However, nodes B and C are not similarly connected, i.e., 
node C may only be reached from node B via traversal of 
spans BO, OA, AO, and OC in the order given, or 
alternatively by some other path (in the network) that 
does not involve junction 0. In short, a link between 
nodes B and C, similar to the ones between nodes A and 
B, and nodes A and C, is missing in Fig. 3(a). Fig. 30)  
is a generalization of Fig. 3(a) It is a fork 

Fig.3(a) Fork configuration with two prongs 
(also called Y configuration in the text), and 
(b) fork configuration with n prongs 

configuration with n prongs; the same constraints apply 
to connections between any pair of nodes Bi and Bj, i#j, i 
= 1,2,---n, and j=1,2,----n. Span A 0  is common to n 
links, AB1, AB2, ----, AB,. Therefore, an accidental cut 
of span A 0  results in the simultaneous loss of all these 
links. 

3) Express Link 

In Fig. 4, links AB, BC, and CD (dashed lines) consist 
of single spans (continuous line) AB, BC, and CD, 
respectively. In addition, nodes A and D arc also connected 

directly by a fiber that originates at node A and terminates 
at node D, traversing spans AB, BC, and CD. This 
connection or link is indicated by the dashed line AD, and 
called an express link. The spans of an express link are 
always the spans of the links it traverses. In Fig. 4, it 
traverses 3 links. In general, an express link may span n 
links, where n is an integer greatex than 1. Furthermore, 
the individual links may consist of more than one span, 
as in the fork configuration. 

A 

Fig. 4 Express link AD traversing three links, 
AB, BC, and CD. 

In what follows, we assume that the network under 
consideration is made up of network configurations 
depicted in Figs. 2, 3, and 4. Figs. 3 and 4 are 
configurations where spans are shared by different links. 
Fig. 5 is an example of a network that includes such 
configurations. This network is identical to the network 
of Fig. 1 at the link-level (dashed lines). There 

B G 

Flg.5 A network with three fork conflgura- 
tions (junction points 0, Os, 0") and express 
link BG (span compostion: BC, CO', OG). 

are 3 fork configurations with junction points: 0, 0', 0 ,  
and an express link, BG. traversing links BC and CG. The 
problem is to find an optimal pair of physically-disjoint 
paths between a given pair of nodes in a network such as 
Fig. 5. Optimality refers to minimum total span miles 
for the pair of paths. 

Clearly, the available shortest pair of node-disjoint 
paths (SPNP) algorithm [l-31 valid for a standard graph- 
theoretic network (as in Fig. 1) cannot be applied to the 
network of Fig. 5 at the span (physical) level, because the 
junction nodes 0,O'. 0 are not true nodes; as discussed 
above, while node 0 in Fig. 3 0 )  can be accessed from the 
neighboring nodes, A, B 1, --- Bn, traffic routed to node 0 
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from node Bi cannot be routed to node Bj U&), in the next 
step. On the other hand, the network at the link level 
(dashed lines) consists of true nodes, and the SPNP 
algorithm is applicable at the link-level. The linlrs may 
be weighted by the sum of the length of the spans 
comprising the link. The SPNP algorithm when applied 
at the link level in Fig. 5 then gives the shortest pair of 
paths, each path in the pair define!d by a sequence of links. 
Optimality is with respect to span mileage. However, the 
paths, although nodedisjoint, are not necessarily span- 
disjoint. For example, for nodes A and 2, the SPNP 
algorithm may find the optimal pair of node-disjoint paths 
to be ABGZ and ADCHZ, in which case spans A0 and 
CO would be common to the two paths found. To avoid 
such span commonness, a new algorithm is needed. In 
the next section, we not only give an algorithm for 
finding physically-disjoint paths (node as well as span- 
disjoint), but also ensure that the pair of paths obtained is 
shortest with respect to span mileage. 

3. Algorithm for the shortest pair of 
physically-disjoint pat hs 

Below we develop the algorithm for the shortest pair 
of physicallydisjoint paths for a given pair of nodes in a 
practical network of the type depicted in Fig. 5. In fact, 
the algorithm we provide for this network may be 
considered from a graph-theoretic standpoint a solution of 
a special case of the general problem, which appears to be 
NP-complete [4]. In other words, the general problem, 
which considers all types of span-sharing topologies, 
cannot be solved in polynomial time. The special case we 
are addressing, however, comprises span-sharing 
topologies that appear to be common in 
telecommunication fiber networks. As we shall see 
below, this particular problem is solvable in polynomial 
time. 

Our strategy here is to perform network 
transformations such that the SPNP algorithm (which is a 
polynomial-time algorithm [l-31) can eventually be used 
at the link-level, while preserving physical dkjointness in 
the searched paths. Therefore, as a first step, we describe 
the SPI" algorithm. The SPNP algorithm we give 
below [3] is an improved version of the Suurballe 
algorithm [1,2] in that it does not require a general 
shortest path algorithm like that of Ford's [5,71 or, 
alternatively a special canonic transformation in order to 
facilitate the use of the popular Dijkstra algorithm [6,7]. 
Rather, the Dijkstra algorithm here is altered slightly to 
circumvent the need for the usual canonic transformation. 
This modified Dijhtra algorithm is given in Appendix A. 

3.1 Shortest pair of node-disjoint paths 
algorithm 

Because the network under consideration is 
bidirectional, each link is equivalent to two oppositely 
directed arcs of equal length. For example, in Fig. 1, link 

BC is equivalent to two arcs, BC and CB. the former 
implying that node C can be reached from node B via link 
BC, and the latter that node B can be reached from nodeC 
via the same link. 

An SPNP algorithm is essentially a shortest pair of 
link-disjoint algorithm applied in a network which has 
been suitably modified by splitting a certain subset of 
nodes. It is the operation of nodesplitting that gives rise 
to nodedisjoinmess in the pair of paths.Using the 
standard node-splitting procedure [5,1,2], the algorithm for 
the shortest pair of node-disjoint paths is a series of 
following steps: 
1. For the given pair of nodes under consideration, find 
the shortest path using the algorithm given in Appendix 
A. For illustration, refer to Fig. 6a. 

H 

Fig. 6a Network of nodes and links; 
shortest path is assumed to be ABCDZ wfth A 
and Z, the starting and terminating nodes, 
respectively in the shortest path algorithm. 

2. Replace each link on the shortest path by an arc 
directed towards the originating node (see Fig. 6b). Make 
the length of the arcs negative. 

- F K - - x  t 

\ Q \  
/ \  \ \  

Fig. 6b Network with shortest path edges 
replaced wlth negative arcs dlrected towards 
the startlng node, A. 

3. Split each node on the shortest path (except the end 
point nodes) into two colocated subnodes. joined by an arc 
of length zero and directed towards the starting node. 
Replace external links connected to nodes on the shortest 
path by two arcs of the same and original length, and 
connected to the two subnodes as shown in Fig. 6c. 
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4. Run the shortest path algorithm (Appendix A) again. . 
c 

F I- 

H 
Y 

Fig. 6c Network modified by node-splitting. 

5. Remove the zero length arcs; coalesce the subnodes 
into their parent nodes. Replace the single arcs of the 
shortest path with their original links (of positive length). 
Remove overlapping arcs of the two paths found to obtain 
the shortest pair of paths. 

Step 2 above permits interlacing of the second path 
(found in Step 4) with the first; e.g., if the second path 
determined in Step 4 is AEFD'CHIZ (see Fig. 6c). it is 
said to interlace with the part CD of the first path found 
in Step 1 (see Fig. 6a); the pair of vertex-disjoint paths 
obtained in this case would be (AEFDZABCHIZ). 

We now consider a network interspersed with express 
links and fork configurations, as in Fig. 5. We first 
focus on the express links. 

3.2 Express Links 

Assumption 1 The span content of an express link is 
exactly the same as the sum of the span contents of the 
individual links comprising the express link. 

We now define the following network 

Network 2 This network is the same as the original 
network, except that express links are removed. 

For example, in such type of a network, express link 
BG in Fig. 5 would be absent. 

Theorem 1 An optimal pair of physically-disjoint pair 
of paths in Network 2 is also an optimalpair of 
physically-disjoint paths in the original network, 
optimality being with respect to span mileage. 

Proof: Suppose physically-disjoint paths exist between 
a given pair of end points (A and 2) in Network 2. 
Consider the optimal pair, denoted by P2, in Network 2 
(see Fig. 7a). By optimal pair is meant a pair of paths 
that is shortest with respect to span mileage. In the 
original network, this pair of paths has the same span 
structure, i.e., it remains physically-disjoint with the 

Network 2 
Optimal Pair P2 

Qriainal Network 

Pair P 
0 

.r/ 

Fig. 7a The optimal pair of physically-disjoint 
paths, P2, in Network 2 shown by the arcs it 
traverses; in the original network, it is shown 
as pair Po. 

Original Network 
Alternate Pair 5, 

Pair Po- 

x - 
>( 

4 

Fig. 7b Alternate pairs of physically-disjoint 
paths, Po* and Po"; the latter is derived from 
the former. 
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same span mileage. We call this pair Po in the original 
network. Now, the following important question arises: Is 
the pair Po also an optimal pair of physically-disjoint 
paths in the original network? In other words, is there 
another physicallydisjoint pair of paths in the original 
network that is shorter than the pair Po ? Let us suppose 
the answer is yes. We show this alumate pair, denoted by 
Po*, in Fig. 7b. Since express links are present in the 
original network, express link traversal is always a 
possibility. As a result, Fig. 7b depicts the paths 
traversing such links. Because of Assumption 1, traversal 
of the paths over express links can be replaced with 
traversals over the component links without changing the 
span mileage. Thus, this pair, denoted by Po" in Fig. 7b, 
is also an optimal pair in the original network. Clearly, 
this optimal pair Pow is also a solution in Network 2. We 
denote this pair of paths in Network 2 by Pz. Now we 
invoke the following general theorem: 

Theorem 2 An optimal solution in a given network, if 
also a solution in a less flexible network, must 
necessarily be an optimal solution in the less flexible 
network. 

Thus, the pair of paths Po** in Fig. 7b, which is an 
optimal physicallydisjoint pair of paths in the original 
network, is also an optimal pair of physically-disjoint 
paths in Network 2 (less flexible due to the absence of 
express links). But this pair Pz is different (and shorter) 
than pair P2 initially assumed to be optimal in Network 
2. The contradiction implies that the alternate pair Po* 
considered in the original network and shown in Fig. 7b, 
cannot be shorter than the 'pair Po (see Fig. 7a). 
Therefore, Po is indeed an optimal pair in the original 
network. This proves Theorem 1. 

Thus, the problem of finding an optimal physically- 
disjoint pair of paths in the original network reduces to 
the problem of finding such a pair in Network 2, where 
express links are absent. Once such a pair is found in 
Network 2, the links present on the paths can be pieced 
together, whenever possible, to form express links that 
exist in the original network. The ensuing paths represent 
the desired pair of paths in the original network. Note that 
the step of piecing together the links to form express 
links, although not necessary, is desirable, since it reduces 
the total number of hops, and thus the dollar cost of 
provisioning the physically disjoint circuits. 

3.3 Fork Configuration 

The network to be considered is Network 2, which is 
made up of the standard links (Fig. 2) and links 
corresponding to the fork configuration (Fig. 3), with 
express links absent. 

Assumptions: 

1) The fork configuration consists of two prongs (this 
assumption is only for the sake of simplicity in 
discussion). See Fig. 3a We call this configuration they 

Flg. 8a Two adjacent Y conflguratlons glvlng 
rlse to multiple links between B and C 

. .B 

\ 

XE 

Fig. 8b Introduction of dummy node B' results 
In the disappearance of multiple links; link BC 
via Junction 0' Is dlvlded Into two links , B'B 
and B'C. 

configuration (as we shall see, the results for the Y 
configuration also hold for the fork configuration with 
more than 2 prongs). 

2) There are no multiple links. If they do occur as in 
Fig. 8a, they can be eliminated by introducing a dummy 
node of degree 2 (see Fig. 8b). Degree of a node is the 
number of neighbors of the node. Dividing a given link 
into two links (as in Fig. 8b) via introduction of a 
dummy node of degree 2 does not affect routing in the 
network. 

Lemma 1 Constraint of node-disjoinmess at the link- 
level ensures absence of span-sharing in the region of the 
network away from the common end points of the two 
paths. 

Fig. 9 shows two paths encountering a Y 
configmtion..The three different orientations of the Y 
Configuration are considered [8]. In each of these cases, the 
constraint of node-disjointness at the link-level ensures 
that span OD common to links CD and BD is not 
traversed by both the paths simultaneously. The reason is 
that sharing of span OD requires each path to meet at node 
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D. Since the constraint of node disjoinmess 

/ 

/ / 1 (YI Orientation) 

D 

-c '\ 
\ 

'\ 

Fig. 9 Paths I and II encounter a Y 
configuration in a different orientation in each 
one of the above figures. 

prevents the two paths to have a common node, the two 
paths cannot meet at node D; hence, sharing of span OD 
cannot occur. 

At the end points, A and Z, between which a pair of 
physically-disjoint paths is sought, two cases arise: 

1. No Y configuration is present. 
2. Y configuration at end point A and/or Z is present. 

3.3.1. No Y configuration at the end points 
We have already noted above that the constraint of node- 
disjointness ensures absence of span sharing away from 
the end points. If, in addition, Y configurations do not 
occur at the. end points, an application of the SPNP 
algorithm at the link-level will guarantee a shortest 
physically-disjoint (node as well as span-disjoint) pair of 
paths. 

3.3.2 Y configuration at the end points When 
Y configurations occur at the end points, they occur in 
two orientations. These orientations, denoted by Y 1 and 
Y2, are displayed in Fig. 10. 

A * 
C 

B .  
>b 
, ,F ( ~ 2  Orientation) 

k - %  * 

D 

Fig. 10 Two orientations, Y1 and Y2, of the 

Y 1 Orientation Constraint of node-disjointness (at 
the link-level) ensures absence of span-sharing at node A; 
for example, if one path leaves node A via link AB, the 
other path necessarily leaves node A via link AD, and 
span OB is never common to the two paths originating 
from node A. Thus, the SPNP algorithm suffices. 

Y2 Orientation In this case, node-disjointness at 
the link level does not guarantee span diversity. For 
example, the two paths found by the SPNP algorithm 
may traverse links AB and AC in which case span A 0  
will be common to both the paths. Thus, the SPNP 
algorithm fails, and a new algorithm is needed. 

Y configuration at the end point A 

Construction of a New Algorithm : 

Consider the most general case where Y 
configurations occur at both the end points (A and 
2). The shortest path between A and Z falls into one of 
three categories: 

1. It does not pass through the Y configurations 
present at the end points. 

2. It passes through a Y configuration at one of the 
end points. 

3. It passes through a Y configuration at each end 
point. 

Case I 

In this case, a second path (node-disjoint from the first) 
will not share any spans with the first path. Thus, the 
SPNP algorithm, when applied, yields an optimal pair of 
paths that is not only node-disjoint but also span- 
disjoint. 
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case 2 

Since the second path node-disjoint from the first can 
share a span (the stem of Y configuration), we need to 
modify the existing algorithm. In what follows, we first 
consider some network transformations. 

Network 3 In Network 2, replace the end point Y 
configuration (through which the shortest path passes) 
with a new Y configurationin which the stem of the Y 
configuration is of length 0,  and the prongs of length 
equal to their respective parent li& (see Fig. I I ) .  

Because this construction leaves the Y configuration 
link lengths unchanged, the network at the link level 
remains unchanged..Thus, the shortest path (in the 
network of links) remains invariant under this 
transformation (see Fig. 11). In other words, the shortest 
path in Network 3 will pass through the same link of the 
Y configuration, and the same component spans (of 
different individual, but same total length) are traversed. 
Furthermore, because the basic topology of the new Y 
configuration replacing the original Y configuration 
remains unchanged, Networks 2 and 3 are equivalent, 
validating the following lemma: 

Lemma 2 An optimal physically-disjoint pair of paths 
in Network 3 is also an optimal physically-disjoint pair 
of paths in Network 2. 

We now define another network transformation. 

Network 4 In Network 3, replace the span no& of the 
new Y configuration through which the shortest path 
passes) with a network node so that spans of the Y 
configuration become links of the network (see Fig. 11).  

We observe that Network 4 behaves like a traditional 
network in the application of the SPNP algorithm for the 
given end points, A and Z. The SPNP algorithm when 
applied between the given end points produces the shortest 
node-disjoint pair of paths with no span overlap. We now 
state and prove the following theorem: 

Theorem 3 An optimal pair of node-disjoint paths in 
Network 4 transforms to an optimal pair of physically- 
disjoint paths in Network 2. 

Proof: We fvst show that the shortest path between A 
and Z in Network 3 remain invariant in Network 4. 

An extra node in Network 4 makes the network less 
constrained (or more flexible) compared to Network 3, and 
leads to the possibility of the shortest path (between the 
end points, A and Z) in Network 4 being shorter than the 
shortest path between the same end points in Network 3. 
Let us assume that the shortest path found in Network 2 
passes through node B, as shown in Fig. 11. As discussed 
earlier, this path will also be the shortest path in Network 

3. Denoting it by SPO, it may be reexpressed as SPO = 
A 0  + OB + shortest path from B to Z. 

Shortest Path SPO 
between A and Z 

Network 2 J 

A 

r 

Network 3 Path SPO + 

Network 4 
Path SPO between 
A and Z 

Fig. 11 Network transformations applied to 
Network 2 yield Network 3 and Network 4 

Suppose the shortest path in Network 4 is indeed 
shorter than path SPO. Two possibilities arise for the new 
shorter path (see Fig. 12). It exits from 

i) node C via path P, node B and node 0 (denote this 
shortest path by SP1). 

ii) node B via path Q, node C and node 0 (denote this 
shortest path by SP2). 

Case i) 

SP1 = Path P + BO + OC + shortest path from C to 
Z=Path P +BO+ (A0  +OC+shortest path from C to Z) 
(since A M )  = Path P + BO + an alternate path between 
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Path P from A to B 

/- // 

New Shortest 
A Path SP1 

A 
Path SP2 

Path Q from A to C 

Fig. 12 Two new possible shortest paths, SP1 
and SP2, in Network 4 

A and 2 in Network 32SPO. since Path P2 0, B020, and 
any alternate path in Network 32 SPO. This result is a 
contradiction, implying case i) is invalid. 

Case ii) 

SP2 = Path Q + CO + OB + shortest path from B to2  = 
Path Q + CO + ( A 0  + OB + shortest path from B to Z) 
(sinceAO=O)= Path Q+ CO + SPO 2 SPO, since Path Q2 
0 and CO2O. This result is a contradiction, ruling out 
case ii) also. 

Since cases i and ii are both invalid, the shortest path 
in Network 4 cannot be shorter than the shortest path in 
Network 3. In other words, a shortest path determined in 
Network 3 will also be shortest in Network 4. 

Because the shortest path (path SPO) in Network 4 
passes through links A 0  and OB at end point A, and a 
non Y configuration at the other end (assumption in Case 
2, which is presently being addressed), Network 4 behaves 
like a traditional network in the application of the SPNP 
algorithm between the given end points. In other words, 
application of SPNF’ algorithm, in conjunction with the 
shortest path found in Network 3, will result in the 
shortest pair of physically-disjoint paths in Network 4. 
Because the SPNP algorithm involves the possibility of 
interlacing of the second path with the first shortest path, 
two classes of solutions exist for the pair, paths I and 11. 
obtained via Step 5 of the SPNP algorithm (see Section 
3.1). At end point A, 

1) Path I traverses links A 0  and OB; path 11 traverses a 

link other than A 0  (this is a case where no interlacing 
takes place or if it takes place, the second path exits from 
a node before node 0 (see Fig. 13)). 

2) Path I traverses links A 0  and OC; path I1 traverses 
a link other than A 0  (this is a case where the second path 
interlaces with the shortest path and exits from node 0 
(see Fig. 13)). 

Second 
L 

I Path 
Shortest Path 
(A to Z) 

.._. 

Second Path 
Sh rtest P 
(A to Z) 

.._ --._ 

x 
z 

th 

x 
A Z 

Fig. 13. The second path interlacing with the 
shortest path in Network 4 (which is the same 
as the shortest path In Network 3), and exiting 
from a node before node 0 in the upper figure, 
and from node 0 in the lower figure. 

The above solutions in Network 4 become solutions 
in Network 3, since traversal of links A 0  and OB (or OC) 
by path I above transforms to a traversal of link A B  (or 
AC) in Network 3. Thus, the optimal solutions obtained 
by using the SPNP algorithm in Network 4 are valid 
physically-disjoint solutions in Network 3. Invoking 
Theorem 2, these physically-disjoint solutions in 
Network 3 (less flexible compared to Network 4) are 
optimal solutions also. This result in conjunction with 
Lemma 2 proves Theorem 3. 

Case 3 

For the third case in which the shortest path passes 
through Y configuration at each of the end points, A and 
Z, the network transformation is performed at bolh the 
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end points, i.e., the junction span nodes of the Y 
configurations are converted to network vestices with the 
stems of the Y configuration reduced to zero length, while 
assigning link lengths to the individual prongs. Similar 
proof can be given to show that optimal solutions given 
by the SPNP algorithm in the transformed network are 
also optimal physically-disjoint solutions in Network 2. 

3.3.3 Algorithms for Y Configuration T h e  
results of Sec. 3.2.1 and Sec. 3.2.2 can now be combined 
into the following algorithm: 

Algorithm 1 In a network containing Y configurations 
(Network 2) .  a shortest pair of physically-disjoint 
paths between a given pair of nodes, A and Z, is obtained 
from the following steps: 

1. Find the shortest path from A to Z. . 
2. Examine the end point spans of the shortest path 
found. If an endpoint span is the stem of a Y 
configuration, perform the following transformation: 

Replace the junction span node of the Y 
configuration by a node and alter the length of the 
stem of the Y configuration to zero, while 
increasing the length of the individual prongs to 
the length of the individual links, as in Fig. 11. 

3. Modify the network (at the link-level) as in the SPNP 
algorithm (see Section 3.1). 
4. Run the shortest path algorithm again (modified 
Dijkstra given in Appendex A). 
5.  Erase overlapping parts and coalesce split nodes, as in 
the SPNP algorithm, to obtain a shortest pair of node- 
disjoint paths. The pair obtained is also span-disjoint. 
6. Transform back to Network 2 by replacing any added 
nodes in step 2 by span nodes and resetting the individual 
span lengths of the Y configuration to original lengths. 
The pair of paths obtained in Step 5 becomes an optimal 
pair in Network 2. 

AB blocked once, and with link AC blocked the second 
time, and choose that result for the shortest pair for which 
the value of the pair length is the lower of the two. 
Similarly, traversal (by the first shortest path) of a Y2 
configuration at the other end point, 2. would require two 
runs of the SPNP algorithm, with one of the two span- 
sharing links blocked in each run. When the shortest path 
traverses Y2 configurations present at both the end points, 
2x2 (4) runs of the SPNP algorithm would be required 
(seeFig. 14). 

Algorithm 2 This algorithm is an alternative to 
Algorithm 1,  and consists of the following steps: 

1. Find the shortest path from A to Z. 
2. Examine the end-point spans of the shortest path 

3. Following cases arise: 
If these spans are not shared spans, run the second 

shortest path algorithm as in the SPNP algorithm 
(Section 3.1); terminate. 

The pair of paths obtained after erasure of any 
overlapping parts will be the desired shortest pair 
with node-disjointness as well as span- 
disjointness. 

If one of the end point spans is a shared span, run 
the SPNP algorithm twice, with one of the two 
span-sharing links blocked in one run, and the 
other span-sharing link blocked in the other run; if 
both the end points have shared spans, run the 
SPNF’ algorithm 2 x 2 (4) times (see Fig. 14). 

Select the pair of paths for which the total length 
is the least. 

Perform erasure of overlapping parts, as in the 
SPNP algorithm. 

Resulting paths form the shortest node, span- 
disjoint pair between the given end points. 

found. 

An Alternative to Algorithm 1 An alternative 
to Algorithm 1 can be derived from Fig. 13 and the 
discussion pertaining to Fig. 12 in the derivation of 
Algorithm 1. In Fig. 13, an exit of the second path from 
a node before node 0 leads to a pair of paths in which 
path I traverses link AB in Network 2, and path II any 
link other than AB and AC. Clearly, this optimal 
solution is also a solution in a network where link AC is 
blocked. Since the latter is a constrained network, by 
virtue of Theorem 2, this solution is an optimal solution 
in the constrained network (link AC blocked). Similarly, 
when the exit of the second path takes place from node 0, 
we obtain a solution in which path I traverses link AC in 
Network 2, and path I1 traverses a link which is neither 
AB nor AC. By similar reasoning, this solution is an 
optimal solution in a network constrained by the blocking 
of link AB. Since it is not known a priori which of the 
two cases (path I traversing link AB or AC) actually 
occurs, one may run the SPNP algorithm twice, with link 

Flg. 14 If the shortest path between A and Z 
passes through shared spans at both ends, 
run the SPNP algorlthm four times, blocking 
the following pairs of links, one at a tlme: 
(AB,XZ), (AB,YZ), (AC,XZ), and (AC,YZ) 

Note that, in Algorithms 1 and 2, a tacit assumption is 
that the links are weighted by the total length of the 
component spans. Thus, the optimality is with respect to 
span mileage. It is important to mention here that these 
algorithms are general enough that weights corresponding 
to a different physical quantity such as dollar cost for 
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transmission over the link, etc., can also be assigned to 
the links, in which case optimality is with respect to that 
physical quantity. 

3.3.4 Algorithms for the general fork 
configuration Algorithms 1 and 2 specifically 
developed for a network in which Y configurations are 
present, extend easily to networks that contain fork 
configurations with more than two prongs (see Fig. 3(b)). 
Algorithm 1 is generalized to fork configurations with an 
arbitrary number of prongs by replacing the expression, Y 
configuration, with fork configuration everywhere in the 
statements of the algorithm. In Algorithm 2, the SPNP 
algorithm will have to be run as many times as n x m, 
where n is the number of links which share the span at 
one end point and m the number shared by the span at the 
other end. Clearly, Algorithm 1, which requires only two 
runs of the shortest path algorithm, is more efficient than 
Algorithm 2 which may require the repeated use of the 
SPNP algorithm. 

3.4 Overall Algorithm 

An algorithm for the overall fiber network obtains 
upon combining the results of Section 3.2 and Section 
3.3. Since results of Section 3.2 are valid for optimality 
with respect to span mileage, the overall algorithm 
performs optimization with respect to span miles. In 
other words, the links are weighted by the total physical 
length of the spans comprising the links. 

Algorithm 3: When a network contains express links, 
and fork configurations, the shortest pair of physically- 
disjoint paths between a given pair of nodes is obtained 
from the following steps: 

configuration of Fig. 3(b), from an algorithmic 
standpoint, it can be replaced with the standard fork 

Fig. 15 Reduction to the fork configuration 

configuration (see Fig. 15), provided the weights (or the 
lengths) of the individual links are preserved. In other 
words, the length of link AC (=AO+OC) in Fig. 15, 
should be the same as the length of link AC 
(=AO+O'O+OC), and the same holds true for the other 
links AB and AD, provided the lengths are unchanged. 

2. Node-to-Node Connections via Junctions: This 
type of a configuration is illustrated in Fig. 16. It is not 

/ '";.;7" 

1. Remove the express links in the network. 
2. Perform steps of Algorithm 1 or 2. 
3. Piece together links on the two paths found to form 

express links, if possible. These express links must 
belong to the set of express links removed in Step 1. 

Step 3 is optional. Its utility lies in the fact that it 
reduces the total number of links in the two physically- 
disjoint paths found by the algorithm. The total number 
of span miles remains unaffected. 

4. Application to  Other Possible 
Configurations 

We enumerate other types of configurations to which 
the developed algorithm can be applied: 

1 .  Multiple Fork Configurations: These are fork 
configurations with more than one junction, and may 
occur frequently in fiber networks. An example with two 
junctions is depicted in Fig. 15. The traffic from node A 
to node B is via spans A 0  and OB, while the traffic from 
node A to node C (or D) traverses spans AO, O'O", 0°C 
(or D). Although physically-different from the fork 

Fig. 16 introduction of a dummy 
reduces the configuration on the left 
basic fork configurations. 

node 
to the 

fundamentally different, since a judicious introduction of a 
dummy node reduces it to a pair of fork configurations. 

3. Triangle Configuration: Fig. 17 shows the 
triangle configuration and its equivalent. Unlike the Y 
configuration, which has a missing link, all the nodes in 
the triangle configuration are connected by a pair of spans 
via junction 0. This leads to the equivalence depicted in 
Fig. 17. 

a+b P . 9 O b  

\ \ I  \ 
a+c \\ " k  

Fig. 17 Reduction of the triangle configuration 
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5. Summary 

In this paper, we have considered networks, which are 
described by links (logical connections) and physical 
connections called spans. Two different links may, 
however, share the same span. We have considered 
different types of span-sharing (including two main ones) 
that may occur in actual telecommunication fiber 
networks, and have provided an algorithm far the shortest 
pair of physically-disjoint paths for a given pair of nodes. 
We give two versions of the algorithm, with the more 
efficient one requiring only two runs of an appropriate 
shortest path algorithm. Disjoint-path algorithms are 
useful in diverse provisioning of business services, and 
when computationally fast can also be employed in real- 
time diverse provisioning of seMces in a switched service 
environment. Additionally. they can also be utilized in a 
robust design of telecommunication networks based on 
the concept of traffic flow over twodisjoint paths for 
every pair of nodes in the network. 
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Appendix A 
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(1984) 325-336. 

Modified Dijkstra Algorithm for Shortest Path 
from A to Z 

The algorithm given below is a slight variant of the 
original Dijkstm algorithm [6,7]. It is different (in Step 3 

below) in that it scans all the neighbors of the node 

Letd(i) denote the distanceof node i f" sraning node 
A. Let P(i) denote its predecessor. 

1. start with 
d(A)=O, d(i)=l(Aj) ,if i E rA,  
= 0, Otherwise 
( r i  =set of fmt neighbar nodes of node i, l(ij)=length of 
81rc from node i tonode j). 
P(i)=A V i E rA. 

selected (or "pemanently 'I labeled) in step 2. 

se$ S = rA. 

2 . F i n d j ~ S  
such that d(j)=min d(i), i E S .  
Set S = S - (j). 
If j = Z (the terminal node), END; otherwise, go to 3. 

3. Vi E r j ,  if du)+l(i,i) c d(i), set d(i)=d(j)+l&i), P(i)=j 
and s= s u ( i ) ;  
go to 2. 

The algorithm, after initialized in step 1, altemates 
between steps 2 and 3. In each iteration, a node with least 
pathlength is selected from the set: S The algorithm 
searches by making one move at a time, and terminates 
when the node selected fiom the sets is Z. 

In the original Dijkstra algorithm, when a node with 
the least path length is selected from the list of tentatively 
labeled nodes, the selected node is said to have been 
labeled "permanently", i.e. the shortest path length to that 
selected node from the given origin (the starting node A) 
has been found. No further scanning from any other node 
in the network can update the label of this node. In our 
application, because of the presence of negative arcs in the 
modified network (see Fig. a), rescanning can update the 
label of the previously selected (or "permanently" labeled) 
node. The algorithm given above permits such 
rescanning. 
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